Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов» Факультет физико-математических и естественных наук

Рекомендовано МССН «Математика и механика»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины

Теория функций действительного переменного

Рекомендуется для направления подготовки/специальности

01.03.01 Математика

Квалификация (степень выпускника) Бакалавр

1. Цели и задачи дисциплины: знакомство с понятием меры множества, продолжением меры по Лебегу и теорией интеграла Лебега. Получение навыков самостоятельного оперирования с абстрактными математическими понятиями и построения доказательств, основанных на определениях и свойствах абстрактных математических объектов; а также получение навыков математически-строгой записи таких доказательств.

2. Место дисциплины в структуре ООП:

Б.1.В.7. Вариативная часть; требуются знания математического анализа; является предшествующей для дисциплин (модулей): функциональный анализ, уравнения математической физики, дисциплины по выбору (функциональные пространства, интегральные неравенства), спецсеминар, научно-исследовательская работа.

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование и развитие следующих компетенций:

ОПК-1. Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

ПК-1 Способен к определению общих форм и закономерностей отдельной предметной области В результате изучения дисциплины студент должен:

Знать: понятия кольца и алгебры множеств, меры множества, продолжения множества по Лебегу (внешняя мера, измеримое множество), измеримой функции, сходимости последовательности функций (поточечной, почти всюду, равномерной и по мере), ступенчатой функции, интеграла Лебега, нормированных пространств интегрируемых функции, неравенства Гельдера, Минковского и Йенсена, знакопеременной меры, производной Радона-Никодима, меры на декартовом произведении и их свойства. А также знать теорему Фубини.

Уметь: доказывать, что заданная совокупность множеств является/не является полукольцом, кольцом или алгеброй; что заданная функция является/не является мерой; что заданное множество является/не является измеримым по Лебегу; что заданная функция является/не является измеримой по Лебегу и другие утверждения, связанные с понятием меры, измеримого множества, измеримой функции и интеграла Лебега. Уметь строить контрпримеры. Уметь исследовать последовательность функций на сходимость (поточечную, почти всюду, равномерную и по мере). Уметь использовать основные факты теории меры и интеграла Лебега, доказанные на лекциях (критерии счетной аддитивности, критерии измеримости множества и функции, свойства измеримых функций и интеграла Лебега, теоремы о предельном переходе под знаком интеграла Лебега, основные интегральные неравенства, теорему Радона-Никодима, теорему Фубини и т.п.)

Владеть: навыками самостоятельного оперирования с абстрактными математическими понятиями и построения доказательств, основанных на определениях и свойствах абстрактных

математических объектов на примере теории функций действительной переменной; а также навыками математически-строгой записи таких доказательств.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 3 зачетных единицы.

Вид учебной работы	Всего	Семестры					
	часов	A					
Аудиторные занятия (всего)		48	48				
В том числе:							
Лекции		16	16				
Практические занятия (ПЗ)		32	32				
Семинары (С)							
Лабораторные работы (ЛР)							
Самостоятельная работа (всего)		60	60				
В том числе:							
Курсовая работа							
Домашние задания	24	24					
Подготовка к экзамену		36	36				
Общая трудоемкость	час	108	108				
	зач. ед.	3	3				

5. Содержание дисциплины

Курс состоит из четырех основных разделов.

$N_{\underline{0}}$	Наименование	Содержание раздела
Π/Π	раздела	
	дисциплины	
1.	Мера Лебега	Полукольцо, кольцо и алгебра множеств. Мера на кольце. Свойство
		мер, эквивалентные счетной аддитивности. Классическая мера.
		Продолжение меры. Внешняя мера. Измеримое множество.
		Критерии измеримости множества. Борелевские множества.
2.	Функции,	Определение и простейшие свойства. Сходимость
	измеримые по	последовательности измеримых функций (поточечная, почти
	Лебегу	всюду, равномерная, по мере). Теоремы Егорова, Лузина, Рисса.

		Контрпримеры.
3	Интеграл Лебега	Определение. Корректность определения. Основные свойства.
		Абсолютная непрерывность интеграла Лебега. Плотность
		непрерывных функций в пространстве интегрируемых по Лебегу
		функций. Теоремы о предельном переходе под знаком интеграла
		Лебега (Леви, Фату, Лебега). Критерий существования интеграла
		Римана.
4	Пространства	Определение и основные свойства. Неравенства Гельдера,
	Лебега	Минковского и Йенсена для интегралов. Норма. Теорема о
		двойственности. Полнота пространств.
5	Знакопеременные	Определение и основные свойства. Разложения Хана и Жордана.
	меры	Теорема Хана. Производная Радона-Никодима. Теорема Радона-
		Никодима.
6	Мера на	Определение и основные свойства. Теорема Фубини. Примеры и
	декартовом	контрпримеры.
	произведении	

5.1. Содержание разделов дисциплины

No	Наименование	Содержание раздела
Π/Π	раздела	
	дисциплины	
1.	Мера Лебега	Полукольцо, кольцо и алгебра множеств. Мера на кольце. Свойство
		мер, эквивалентные счетной аддитивности. Классическая мера.
		Продолжение меры. Внешняя мера. Измеримое множество.
		Критерии измеримости множества. Борелевские множества.
2.	Функции,	Определение и простейшие свойства. Сходимость
	измеримые по	последовательности измеримых функций (поточечная, почти
	Лебегу	всюду, равномерная, по мере). Теоремы Егорова, Лузина, Рисса.
		Контрпримеры.
3	Интеграл Лебега	Определение. Корректность определения. Основные свойства.
		Абсолютная непрерывность интеграла Лебега. Плотность
		непрерывных функций в пространстве интегрируемых по Лебегу
		функций. Теоремы о предельном переходе под знаком интеграла
		Лебега (Леви, Фату, Лебега). Критерий существования интеграла
		Римана.
4	Пространства	Определение и основные свойства. Неравенства Гельдера,

	Лебега	Минковского и Йенсена для интегралов. Норма. Теорема о двойственности. Полнота пространств.
5	Знакопеременные	Определение и основные свойства. Разложения Хана и Жордана.
	меры	Теорема Хана. Производная Радона-Никодима. Теорема Радона-
		Никодима.
6	Мера на	Определение и основные свойства. Теорема Фубини. Примеры и
	декартовом	контрпримеры.
	произведении	

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

№	Наименование обеспе-	Nº Nº	№ № разделов данной дисциплины, необходимых для							
Π/Π	чиваемых (последую-	изуче	ния обе	спечи	ваемых	(после	дующи	іх) дисі	циплин	
	щих) дисциплин	1	2	3	4	5	6			
1.	Функциональный			+	+	+				
	анализ									
2.	Уравнения			+	+		+			
	математической									
	физики									
•••										

5.3. Разделы дисциплины и виды занятий

No	Наименование раздела дисциплины	Лекц.	Практ.	Лаб.	Семин	CPC	Bce-
Π/Π			зан.	зан.			ГО
11/11							час.
1.	Мера Лебега	6	12			10	28
2.	Функции, измеримые по Лебегу	2	4			10	16
3	Интеграл Лебега	2	4			10	16
4	Пространства Лебега	2	4			10	16
5	Знакопеременные меры	2	4			10	16
6	Мера на декартовом произведении	2	4			10	16

6. Лабораторный практикум: не предусмотрен.

7. Практические занятия (семинары):

№	№ раздела	Тематика практических занятий (семинаров)	Трудо-
п/п	дисциплины		емкость
1.	1	Операции над множествами. Системы множеств.	(час.) 2
		1	
2.	1	Мера на кольце множеств	2
3.	1	Продолжение меры.	2
4.	1	Счетная аддитивность.	2
5.	1	Критерии измеримости множеств	2
6.	1	Контрольная 1.	2
7.	2	Измеримые функции	2
8.	2	Сходимость последовательности измеримых функций	2
9.	3	Интеграл Лебега	2
10.	3	Предельный переход под знаком интеграла Лебега.	2
11.	2,3	Контрольная 2.	2
12.	4	Сходимость в пространстве Лебега.	2
13.	4	Интегральные неравенства.	2
14.	5	Знакопеременная мера Теорема Радона-Никодима.	2
15.	6	Теорема Фубини	2
16.	4,5,6	Контрольная 3	2

8. Примерная тематика курсовых проектов (работ): НЕТ

9. Учебно-методическое и информационное обеспечение дисциплины:

а) основная литература____ М.И. Дьяченко, П.Л. Ульянов «Мера и интеграл» М.: Факториал, 1998; П.Л. Ульянов и др. «Действительный анализ в задачах» Физматлит, 2005 б) дополнительная литература И.П. Натансон «Теория функций вещественной переменной» М.: Наука, 1974; Б.З. Вулих «Краткий курс теории функций вещественной переменной» М.: Наука, 1973; С.А. Теляковский «Сборник задач по теории функций действительного переменного» М.: Наука, 1980; А.Н. Колмоговров, С.В. Фомин «Элементы теории функций и функционального анализа» М.: Наука, 1976 Вся литература имеется в библиотеке РУДН и/или в электронном виде на кафедре.

в) программное обеспечение НЕ ИСПОЛЬЗУЕТСЯ.

г) базы данных, информационно-справочные и поисковые системы: Yandex, Goole, MathNet.

10. Материально-техническое обеспечение дисциплины

учебная аудитория для проведения семинарских занятий, большая аудитория (лекционный зал) для чтения лекций, ноутбук - 1шт., ксерокс - 1 шт., принтер - 1шт., сканер - 1 шт. Все студенты направления НМ обладают возможностью работы за компьютером с использованием интернета (в основном имеют личный компьютер, в крайнем случае в дисплейных классах). На учебном портале РУДН доступны методические материалы по данной дисциплине (курс лекций, план занятий, домашние задания, вопросы для самоконтроля к лекциям и практическим занятиям).

11. Методические рекомендации по организации изучения дисциплины:

Помимо основной информативной части данный курс готовит студентов к знакомству с курсом «Функциональный анализ». Поэтому основное внимание уделяется выработке у студентов отношения к определениям математических объектов, как к особому языку записи математических идей, причинно-следственных связей и фактов; отношения к доказательствам, как к средствам достижения цели (проверки и обоснования фактов), а не как к фактам, требующим запоминания.

Разработчик:

д.ф.-м.н., проф.

اسر

Е.И. Галахов

Директор Математического института им. С.М. Никольского, д.ф.-м.н., профессор

4 A.

А.Л. Скубачевский

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Факультет физико-математических и естественных наук

Математический институт имени С.М.Никольского

УТВЕРЖДЕН								
На заседании института								
« » 2020 г.,								
протокол №								
Директор института								
А.Л.Скубачевский								

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине Теория функций действительного переменного

Рекомендуется для направления подготовки

01.03.01 Математика

Квалификация (степень) выпускника

Бакалавр

Квалификация (степень) выпускника

Паспорт фонда оценочных средств по дисциплине «Теория функций действительного переменного» Направление/Специальность: 02.03.01 «Математика и компьютерные науки»

		Наименование оценочного средства												_					
uactu			Текущий контроль Промежуточная аттестация										Баллы темы	Баллы раздела					
Код контролируемой компетеннии или ее	Контролируемый раздел дисциплины	Контролируемая тема дисциплины	Опрос	Тест	Коллоквиум	Контрольная работа	Выполнение ЛР	Выполнение КР/КП	СРС(Выполнение ДЗ)	Реферат	Выполнение РГР	:	:	:	Зачет	:	:		
ОПК- 1	Раздел 1: «Мера Лебега»	Тема 1: «Мера Лебега»	15												9			24	24
ОПК- 1	Раздел 2: «Функции, измеримые по Лебегу»	Тема 1: «Функции, измеримые по Лебегу»	5												3			8	8
ОПК- 1	Раздел 3: «Интеграл Лебега»	Тема 1: «Интеграл Лебега»	10												7			17	17
	Раздел 4: «Пространства Лебега»	Тема 1: «Пространства Лебега»	10												7			17	17
	Раздел 5: «Знакопеременные меры»	Тема 1: «Знакопеременные меры»	10												7			17	17
	Раздел 6: «Меры на декартовом произведении»	Тема 1: «Меры на декартовом произведении»	10												7			17	17
		ИТОГО:	60												40			100	100

Перечень оценочных средств по дисциплине «<u>Теория функций действительного переменного»</u>

п/п	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в фонде
	Опрос	Форма проверки качества усвоения студентами учебного материала в соответствии с утвержденной программой.	Перечень вопросов аттестации по курсу
	Зачет	Форма проверки качества усвоения студентами учебного материала и выполнения в процессе обучения всех учебных поручений в соответствии с утвержденной программой.	Комплект билетов зачета

Приложение

Дисциплина Теория функций действительного переменного

Комплект билетов зачета

БИЛЕТ № 1

- 1. Мера на кольце (свойства меры).
- 2. Сравнение интеграла Лебега и интеграла Римана.

БИЛЕТ № 2

- 1. Классическая мера на кольце прямоугольников и их объединений.
- 2. Неравенство Гельдера для интегралов.

БИЛЕТ № 3

- 1. Внешняя мера.
- 2. Неравенства Минковского и Йенсена для интегралов.

БИЛЕТ № 4

- 1. Мера Лебега.
- 2. Пространства последовательностей. Неравенство Минковского при р из (0,1).

БИЛЕТ № 5

- 1. Структура совокупности множеств, измеримых по Лебегу.
- 2. Сходимость в пространстве L_p.

БИЛЕТ № 6

- 1. Определение и простейшие свойства функций, измеримых по Лебегу.
- 2. Полнота пространства L р.

БИЛЕТ № 7

- 1. Сходимость последовательности измеримых функций (различные типы сходимости, теорема Егорова и следствие из нее).
- 2. Знакопеременные меры. Разложение Хана (вспомогательные утверждения и их роль).

БИЛЕТ № 8

- 1. Сходимость последовательности измеримых функций (различные типы сходимости, теорема Рисса).
- 2. Знакопеременные меры. Разложение Хана.

БИЛЕТ № 9

- 1. Теорема Лузина.
- 2. Теорема Радона-Никодима.

БИЛЕТ № 10

- 1. Определение интеграла Лебега и его корректность.
- 2. Мера на декартовом произведении

БИЛЕТ № 11

- 1. Основные свойства интеграла Лебега. Прямая в пространстве. Способы ее задания.
- 2. Теорема Фубини (формулировка и основные этапы доказательства).

БИЛЕТ № 12

- 1. Предельный переход под знаком интеграла Лебега (теоремы Леви, Фату и Лебега).
- 2. Теорема Фубини (контрпримеры).

Каждому студенту достается по одному билету из данного перечня. Ответ на каждый вопрос оценивается от 0 до 20 баллов в зависимости от полноты и правильности ответов.

ПЕРЕЧЕНЬ ВОПРОСОВ АТТЕСТАЦИИ ПО КУРСУ

- 1. Мера на кольце (свойства меры).
- 2. Классическая мера на кольце прямоугольников и их объединений.
- 3. Внешняя мера.
- 4. Мера Лебега.
- 5. Структура совокупности множеств, измеримых по Лебегу.
- 6. Определение и простейшие свойства функций, измеримых по Лебегу.
- 7. Сходимость последовательности измеримых функций (различные типы сходимости, теорема Егорова и следствие из нее).
- 8. Сходимость последовательности измеримых функций (различные типы сходимости, теорема Рисса).
- 9. Теорема Лузина.
- 10. Определение интеграла Лебега и его корректность.
- 11. Основные свойства интеграла Лебега.
- 12. Предельный переход под знаком интеграла Лебега (теоремы Леви, Фату и Лебега).
- 13. Сравнение интеграла Лебега и интеграла Римана.
- 14. Неравенство Гельдера для интегралов.
- 15. Неравенства Минковского и Йенсена для интегралов.
- 16. Пространства последовательностей. Неравенство Минковского при р из (0,1).
- 17. Сходимость в пространстве L р.
- 18. Полнота пространства L р.
- 19. Знакопеременные меры. Разложение Хана (вспомогательные утверждения и их роль).
- 20. Знакопеременные меры. Разложение Хана.
- 21. Теорема Радона-Никодима.
- 22. Мера на декартовом произведении
- 23. Теорема Фубини (формулировка и основные этапы доказательства; детали отдельных этапов доказательства по выбору преподавателя).
- 24. Теорема Фубини (контрпримеры).