Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Экологический факультет

Рекомендовано МССН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины

Основы микробиологии

Рекомендуется для направления подготовки/специальности

05.04.06 «Экология и природопользования»

Направленность программы (профиль)

Рециклинг отходов производства и потребления

1. Цели и задачи дисциплины:

Формирование знаний, умений и навыков в области биохимии микроорганизмов. Изучение метаболических путей и циклов. Изучение способности управлять скоростями отдельных реакций каждого метаболического пути и общими скоростями метаболических путей в клетке микроорганизмов. Изучение высокоразвитой системы регуляции микробного метаболизма, с помощью регуляторных механизмов.

2. Место дисциплины в структуре ОП ВО:

Дисциплина «Основы микробиологии» относится к вариативной части блока 1 учебного плана.

В таблице № 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО.

Таблица № 1 Предшествующие и последующие дисциплины, направленные на формирование компетенций

No	Шифр и наименование	Предшествующие	Последующие дисциплины			
Π/Π	компетенции	дисциплины	(группы дисциплин)			
Общекультурные компетенции						
Общег	профессиональные компе	тенции				
1		Биология				
2		Экология				
3		Химия				

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций: **ОПК-1**; **ОПК-2**

Код и наименование компетенции								
	выпускника							
ОПК-1.	Спос	обен	П]	рименять				
базовые	знания	фунд	амен	нтальных				
разделов	разделов наук о Земле, естественно-							
научного	и матем	иатичес	ског	о циклов				
при рег	пении	задач	В	области				

экологии и природопользования ОПК-2. Способен использовать специальные и новые разделы экологии, геоэкологии и природопользования при решении научно-исследовательских и прикладных задач профессиональной

деятельности.

Код и наименование индикатора достижения						
компетенции						
ОПК-1.1	Знает	философские	концепции			
естествознания и методологию научного познания,						

ОПК-1.2 Умеет использовать углубленные знания философских концепций естествознания при оценке последствий своей профессиональной деятельности

ОПК-1.3 Способен применять полученные знания в своей научно-исследовательской деятельности, делать правильные обобщения и выводы

ОПК-2.1 Знает основы экологии, геоэкологии, экономики природопользования и экономики замкнутого цикла, а также экологического менеджмента

ОПК-2.2 Умеет использовать экологические, экономические и другие специальные знания и алгоритмы для решения профессиональных задач

ОПК-2.3 Способен находить, анализировать и грамотно использовать новейшую информацию и современные методики при выполнении научно-исследовательских и прикладных задач

В результате изучения дисциплины студент должен:

Знать: Основные понятия микробиологии, систематику микроорганизмов, роль микроорганизмов в экологических процессах. Основы биохимии микроорганизмов..

апетата.

Уметь: Различать основные систематические группы микроорганизмов, особенности их морфологии и анатомического строения. Отличать аллостерические белки от регуляторных белков. Отличать белки-репрессоры от индуктора. Отличать «глюкозный эффект» от катаболитной репрессии.

Владеть: Методами отбора биологических проб и описания биологического разнообразия микроорганизмов. Понятиями согласованное ингибирование, кумулятивное ингибирование. Владеть знаниями о тесной связи между синтезом ДНК и делением клетки, и понимать, что самые разнообразные химические вещества или мутации, ингибирующие синтез ДНК одновременно подавляют деление клетки.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 3 зачетные единицы

Вид учебной работы		Всего	Модули			
		часов	1	2	3	4
Аудиторные занятия (всего)		36		36		
В том числе:						
Лекции		18		18		
Практические занятия (ПЗ)		18		18		
Семинары (С)						
Контроль		6		6		
Самостоятельная работа (всего)		66		66		
Общая трудоемкость	час	108		108		
	зач. ед.	3		3		

5.2. Разделы дисциплин и виды занятий

No	Наименование раздела дисциплины	Лекц.	Практ.	Лаб.	Контроль	CPC	Bce-
Π/Π			зан.	зан.			го
							час.
1	Введение	1	1			5	7
2	Биология клетки	1	1			5	7
3	Систематика микроорганизмов	2	2			5	9
4	Роль микроорганизмов в	2	2		2	5	11
	экологических процессах						
5	Регуляция	1	1			5	7
6	Рост микроорганизмов	1	1			5	7
7	Влияние окружающих условий на рост	1	1		2	5	9
	микроорганизмов						
8	Введение в биоэнергетику	1	1			5	7
9	Пути расщепления гексоз	1	1			5	7
10	Превращение пирувата	1	1			5	7
11	Окисление ацетата	2	2			6	10
12	Окисление одноуглеродных	2	2		2	5	11
	соединений						
13	Расщепление неуглеводных	2	2			5	9
	соединений.						
	ИТОГО	18	18		6	66	108

6. Лабораторный практикум - нет

7. Практические занятия (семинары)

№ п/п	№ раздела дисциплины	Тематика практических занятий (семинаров)	Трудо- емкость
			(час.)
1.	Введение	Основные понятия микробиологии и строение клетки прокариот и эукариот	2
2	Систематика микроорганизмов	Подробный анализ систематики микроорганизмов царства Архибактерии, Бактерии, Грибы, подцарство Простейшие царства Животных	2
3	Роль микроорганизмов в экологических процессах	Подробный разбор функциональной роли микроорганизмов в биосфере	2
4	Регуляция	Биохимическая основа регуляции. Регуляция синтеза ферментов. Сложные системы регуляции. Регуляция синтеза ДНК и деление клетки.	2
5	Рост микроорганизмов	Определение роста. Математическое выражение роста. Синхронный рост. Непрерывные культуры микроорганизмов. Энергия необходимая для поддержания жизнедеятельности микроорганизмов.	2
6	Влияние окружающих условий на рост микроорганизмов	Функции клеточной мембраны. Поступление питательных веществ в клетку. Влияние растворимых веществ на рост и метаболизм. Влияние температуры на рост микроорганизмов. Отношение к кислороду.	2
7	Введение в биоэнергетику	Основные понятия биохимии микроорганизмов АТФ и его функции. Трансмембраны градиенты и их функции. Никотинамидные нуклеотиды и их роль преобразования энергии в клетке. Субстратное фосфорилирование АДФ и немембранные биоэнергетические системы. Реакции субстратного фосфорилирования.	2
8	Пути расщепления гексоз	Гликолиз. Гексозомонофосфатный путь и фосфокетолазный путь.	2
9	Превращение пирувата	Окисление с образованием ацетил-КоА. Карбоксилирование с образованием оксал ацетата.	2
10	Окисление ацетата	Цикл лимонной кислоты (цикл Кребса). Модификация цикла лимонной кислоты. Окисление ацетата при участии СОдегидрогеназы.	2
11	Окисление одноуглеродных соединений	Окисление метана. Окисление метанола. Расщепление неуглеводных соединений. Расщепление глицерола. Расщепление жирных кислот. Окисление н-алканов.	2
	ИТОГО	Mission Oknowichine ii wikunob.	18

8. Материально-техническое обеспечение дисциплины:

Комплект специализированной мебели; доска меловая; технические средства: системный блок HP PRO, монитор HP-V2072A, выдвижной проекционный экран LUMIEN, имеется выход в интернет. Microsoft Windows 7 корпоративная. Лицензия № 5190227, дата выдачи 16.03.2010 г.

9. Информационное обеспечение дисциплины

- a) программное обеспечение MicrosoftOffice 2003, 2007, 2010, Netware (Novell), OS/2 (IBM), SunOS (SunMicrosystems), Java Desktop System Sun Microsystems
- б) базы данных, информационно-справочные и поисковые системы Google, Yandex, Yahoo, Google Scholar, РИНЦ

10. Учебно-методическое обеспечение дисциплины:

а) основная литература

- 1. Мушкамбаров Н.Н., Кузнецов С.Л. Молекулярная биология. Введение в молекулярную цитологию и гистологию. Учебное пособие. М.: МИА, 2016. 664 с. Электронный ресурс: OZON.ru>context/detail/id/136682157/
- 2. Шилов И.А. Экология. 7-е изд. М.: Издательство Юрайт, 2015. 512 с. Электронный ресурс: https://aldebaran.ru/author/aleksandrovich_shilov_igor_1/
- 3. Леонова, И. Б. Основы микробиологии: учебник и практикум для академического бакалавриата / И. Б. Леонова. М.: Издательство Юрайт, 2018. 298 с. (Серия: Бакалавр. Академический курс) Библиотека РУДН.
- 4. Ручин А.Б., Лукаткин А.С., Силаева Т.Б. Биология с основами экологии. Учебник для вузов, 2 изд. М.: Academia, 2011. 400 с. Электронный ресурс: http://www.academia-moscow.ru/catalogue/4887/94381/
- 5. Электронный ресурс: http://nashol.com/2013010769024/genetika-ivanov-v-i-2006.html

б) дополнительная литература

- 1. Инге-Вечтомов, С.Г. Генетика с основами селекции: учебник для студентов вузов С.Г. Инге-Вечтомов. 2-е издание, перераб. и доп. СПб.: Изд-во Н-Л, 2010. 720 с.: ил.
- 2. Биология. Справочник студента / А.А. Каменский, А.И. Ким, Л.Л. Великанов, О.Д. Лопина, С.А. Баландин, М.А. Валовая, Г.А. Белякова М.: Филологическое общество «Слово», ООО «Издательство АСТ», 2001. 640 с.
- 3. Грин Н., Стаут У., Тейлор Д. Биология: В 3-ех томах. Пер. с англ./Под ред. Р. Сопера. -М.: Мир, 1996.

11. Методические указания для обучающихся по освоению дисциплины (модуля)

Самостоятельная работа студента — это вид учебной деятельности, выполняемый учащимся без непосредственного контакта с преподавателем или управляемый преподавателем опосредовано через специальные учебные материалы; неотъемлемое обязательное звено процесса обучения, предусматривающее прежде всего индивидуальную работу учащихся в соответствии с установкой преподавателя или учебника, программы обучения.

В процессе самостоятельной деятельности студент должен научиться выделять познавательные задачи, выбирать способы их решения, выполнять операции контроля за правильностью решения поставленной задачи, совершенствовать навыки реализации теоретических знаний. Формирование умений и навыков самостоятельной работы студентов может протекать как на сознательной, так и на интуитивной основе. В первом случае исходной базой для правильной организации деятельности служат ясное понимание целей, задач, форм, методов работы, сознательный контроль за ее процессом и результата ми. Во втором случае преобладает смутное понимание, действие привычек, сформировавшихся под влиянием механических повторений, подражание и т. п.

Формы самостоятельной работы студентов – это письменные работы, изучение литературы и практическая деятельность.

Виды самостоятельной работы студентов:

• контрольные работы;

- рефераты, доклады;
- эссе и практические задания.

Изучение литературы также можно подразделить на отдельные виды самостоятельной работы:

- изучение базовой литературы учебников и монографий;
- изучение дополнительной литературы периодические издания, специализированные книги, практикумы;
- конспектирование изученных источников.

Практическая деятельность, как форма самостоятельной работы, включает в себя следующие виды самостоятельной работы:

- · подготовку научных докладов, рефератов и выступление с ними на заседаниях научного кружка студентов при кафедрах;
- · изготовление наглядных схем, диаграмм и т.п.;
- · подготовку отчетов по практике;
- участие в конкурсах, олимпиадах на лучшую работу студентов;
- выступление с докладами на научных студенческих конференциях.

Отдельно следует выделить подготовку к экзаменам и зачетам, как особый вид самостоятельной работы. Основное его отличие от других видов изучения литературы в том, что студенты готовятся к экзамену по имеющейся программе и ищут в различных источниках ответы на конкретные вопросы. Т.е. источники не изучаются сплошным методом, а выборочно по оглавлению и ключевым терминам (которые можно найти в конце большинства учебников).

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

- 12.1 Паспорт ФОС (см. Приложение 1)
- 12.2 Материалы для самоподготовки (см. Приложение 2)

Паспорт фонда оценочных средств по дисциплине по дисциплине «Основы микробиологии» Направление 05.04.06 «Экология и природопользования»

•	Контролируемый	Контролируемая		енован очного дства ций оль		TEMBI	
Код контролируемой компетенции или ее части	раздел дисциплины	тема дисциплины	Работа на занятиях	Тестирован ие	Экзамен	БАЛЛЫ	БАЛЛЫ РАЗДЕЛА
ОПК-1, ОПК-2	Введение	Микробиология как раздел биологии и основа экологии, медицины, фармакологии, сельского хозяйства, биотехнологии.	2	2	4	8	8
ОПК-1, ОПК-2	Биология клетки	Строение клетки прокариот и клетки эукариот. Химический состав клетки. Модель биосинтеза белка и фотосинтеза.	2	2	4	8	8
ОПК-1, ОПК-2	Систематика микроорганизмов	Систематика микроорганизмов: бактерии, простейшие и одноклеточные грибы.	2	2	4	8	8
ОПК-1, ОПК-2	Роль микроорганизмов в экологических процессах	Экологические группы архибактерий, бактерий и простейших. Микроорганизмы в роли деструкторов органического вещества в биосфере.	2	2	4	8	8
ОПК-1, ОПК-2	Регуляция	Основные понятия биохимии микроорганизмов. Биохимическая основа регуляции. Регуляция синтеза ферментов. Сложные системы регуляции. Регуляция синтеза ДНК и деление клетки.	2	2	4	8	8

ОПК-1, ОПК-2	Рост микроорганизмов	Определение роста. Математическое выражение роста. Синхронный рост. Непрерывные культуры микроорганизмов. Энергия необходимая для поддержания жизнедеятельности микроорганизмов.	2	2	4	8	8
ОПК-1, ОПК-2	Влияние окружающих условий на рост микроорганизмов	Функции клеточной мембраны. Поступление питательных веществ в клетку. Влияние растворимых веществ на рост и метаболизм. Влияние температуры на рост микроорганизмов. Отношение к кислороду.	4	4	4	12	12
ОПК-1, ОПК-2	Введение в биоэнергетику	АТФ и его функции. Трансмембраны градиенты и их функции. Никотинамидные нуклеотиды и их роль преобразования энергии в клетке. Субстратное фосфорилирование АДФ и немембранные биоэнергетические системы. Реакции субстратного фосфорилирования.	2	2	4	8	8
ОПК-1, ОПК-2	Пути расщепления гексоз	Гликолиз. Гексозомонофосфатный путь и фосфокетолазный путь.	2	2	4	8	8
ОПК-1, ОПК-2	Превращение пирувата	Окисление с образованием ацетил-КоА. Карбоксилирование с образованием оксал ацетата.	2	2	4	8	8
ОПК-1, ОПК-2	Окисление ацетата	Цикл лимонной кислоты (цикл Кребса). Модификация цикла лимонной кислоты. Окисление ацетата при участии СО-дегидрогеназы.	2	2	4	8	8
ОПК-1, ОПК-2	Окисление одноуглеродных соединений	Окисление метана. Окисление метанола. Расщепление неуглеводных соединений. Расщепление глицерола. Расщепление жирных кислот. Окисление <i>н</i> -алканов.	2	2	4	8	8
	ИТОГО		26	26	48	100	100

12.2 Материалы для самоподготовки по дисциплине «Основы микробиологии»

Используемая балльно-рейтинговая система

Шкала оценок:

Баллы БРС	Традиционные оценки	Оценки ECTS
95-100	5	A
86-94	3	В
69-85	4	С
61-68	2	D
51-60	3	Е
31-50	2	FX
0-30	2	F

Пояснение оценок

- А Выдающийся ответ
- В Очень хороший ответ
- С Хороший ответ
- D Достаточно удовлетворительный ответ
- E Отвечает минимальным требованиям удовлетворительного ответа Оценка 2+ (FX) означает, что студент может добрать баллы только до
- FX минимального удовлетворительного ответа Неудовлетворительный ответ (либо повтор курса в установленном
- F порядке, либо основание для отчисления)

Вопросы для самоподготовки

- 1. Какие организмы не имеют клетки?
- 2. Что общего у клеток прокариот и у клеток эукариот?
- 3. Назовите основные положения современной клеточной теории
- 4. Кто был автором клеточной теории?
- 5. Перечислите особенности животной клетки
- 6. Перечислите компоненты ядра клетки
- 7. Перечислите мембранные компоненты клетки
- 8. Какие функции в клетке выполняют лизосомы?
- 9. Какие функции в клетке выполняет аппарат Гольджи?
- 10. Перечислите основные микроэлементы, входящие в химический состав клетки.
- 11. Что такое гидролиз?
- 12. Что такое незаменимые аминокислоты?
- 13. Что такое четвертичная структура белка?
- 14. Перечислите функции белков
- 15. Из чего состоит мононуклеотид ДНК?
- 16. Кто расшифровал структуру молекулы ДНК?
- 17. Какие реакции называются реакциями матричного синтеза?
- 18. Каким азотистым основанием ДНК отличается от РНК?
- 19. Какую длину (в нуклеотидах) имеет иРНК?
- 20. На какие группы разделяются углеводы?
- 21. Назовите типы организации клеток.
- 22. Чем отличаются клетки прокариот от клеток эукариот?
- 23. Назовите основные положения современной клеточной теории.
- 24. Кто открыл яйцеклетку млекопитающих?
- 25. Перечислите особенности растительной клетки.
- 26. Перечислите не мембранные компоненты клетки.

- 27. Перечислите мембранные компоненты клетки.
- 28. Какие функции в клетке выполняют митохондрии?
- 29. Какие функции в клетке выполняет эндоплазматический ретикулум?
- 30. Перечислите макроэлементы, входящие в химический состав клетки.
- 31. Что такое диссоциация?
- 32. Сколько аминокислот входит в состав белков?
- 33. Что такое третичная структура белка?
- 34. Из чего состоит мононуклеотид РНК?
- 35. Что такое репликация?
- 36. Перечислите типы РНК.
- 37. Что такое принцип комплементарности?
- 38. Каким азотистым основанием РНК отличается от ДНК?
- 39. Какую длину (в нуклеотидах) имеет рРНК?
- 40. Перечислите функции углеводов и липидов.

Примеры тестов для рубежной аттестации Вариант 1

- 1. Представителями неклеточной формы жизни являются:
 - 1. грибы,
 - 2. бактериофаги,
 - 3. бактерии,
 - 4. вирусы,
 - а. археобактерии
- 2.В бактериальной клетке имеются:
 - 1. митохондрии;
 - 2. пластиды,
 - 3. ядерная оболочка,
 - 4. рибосомы,
 - 5. мезосомы
- 3. Выберите вирусные заболевания человека:
 - 1. корь
 - 2. оспа
 - 3. грипп
 - 4. инфекционный гепатит
 - 5. Микоплазмоз
- 4.К грибоподобным протоктистам относятся:
 - 1. Оомицеты
 - 2. Хитридиомицеты
 - 3. Базидиомицеты
 - 4. Миксомицеты

Блок Б

- 1. В чем заключается эволюционное значение вирусов?
- 2. Экологическое значение прокариот
- 3. Экзотрофная микориза и ее экологическая роль
- 4. Что такое зиготическая редукция

Вариант 2

Дайте систематику органического мира до царства

Блок А

- 1.В геноме вируса имеются:
 - 1. ДНК
 - 2. PHK
 - 3. ДНК и РНК
 - 4. иной носитель наследственной информации
- 2.В бактериальной клетке отсутствуют:

- 1. рибосомы,
- 2. ДНК,
- 3. комплекс Гольджи,
- 4. митохондрии,
- 5. клеточная стенка
- 3. Выберите вирусные заболевания человека:
 - 1. СПИД
 - 2. лямблиоз
 - 3. некоторые формы рака человека и животных
 - 4. полиомиелит
 - 5. клещевой энцефалит
- 4. К царству Грибы относятс:
 - 1. Зигомицеты
 - 2. Аскомицеты
 - 3. Миксомицеты
 - 4. Базидиомицеты
 - 5. Дейтеромицеты

Блок Б

- 1. Что такое трансдукция?
- 2. Экологическое значение прокариот
- 3. Эндотрофная микориза и ее экологическая роль
- 5. Что такое гаметическая редукция?

Вопросы для итоговой аттестации

- 1. Что определяет специфические особенности разных пептидов и белков:
- а). Длина пептидной цепи;
- б). Различие аминокислотного состава;
- в). Последовательность аминокислотных остатков;
- г). длина пептидной цепи, различие аминокислотного состава, последовательность аминокислотных остатков.
- 2. Секвенатор- это:
- а). Автоматический прибор, позволяющий изучать первичную структуру белков;
- б) Автоматический прибор, позволяющий изучать вторичную структуру белков;
- в). Автоматический прибор, позволяющий изучать третичную структуру белков;
- г). Автоматический прибор, позволяющий изучать четвертичную структуру белков;
- 3. Коферменты- это:
- а). Органические вещества;
- б). Неорганические вещества;
- в). Органические вещества неаминокислотной природы;
- г). Органические вещества неаминокислотной природы, участвующие в катализе в составе фермента.
 - 4. Из 2 атомов водорода (2 протона +2 эдектрона), отщепляемых от субстрата к НАД присоединяются:
- а). 2 протона;
- б). 2 электрона;
- в). 2 протона +2 эдектрона;
- г). Протон +2 электрона
 - 5. КоА участвует в превращении в клетке:
- а). Карбоновых кислот;

- б). Углеводов;
- в). Жирных кислот;
- г). Нуклеиновых кислот.
 - 6. Физико- химические свойства мембран определяются:
- а). Белками;
- б). Углеводами;
- в). Нуклеиновыми кислотами;
- г). Липидами.
 - 7. Простая диффузия-это перенос веществ через мембрану:
- а). По градиенту концентрации;
- б). Против градиента концентрации;
- в). С помощью белков- переносчиков;
- г). С затратами АТФ.
- 8. Облегченная диффузия это перенос веществ через мембрану:
- а). По градиенту концентрации;
- б). Против градиента концентрации;
- в). По градиенту концентрации с помощью белков-переносчиков;
- г). С затратами АТФ.
- 9. Активный транспорт это перенос веществ через мембрану:
- а). по градиенту концентрации;
- б). против градиента концентрации;
- в). по градиенту концентрации с помощью белков- переносчиков;
- ж) против градиента концентрации с затратами АТФ.
- 10. В результате окислительного декарбоксилирования пирувата образуется:
- а). ацетил-КоА;
- δ). NADH + H;
- B). CO₂;
- г). ацетил-КоA+ NADH + H+ CO₂.
- 11. Мономерной единицей нуклеиновых кислот являются:
- а). Нуклеотиды;
- б). Нуклеозиды;
- в). Пуриновые основания;
- г). Пиримидиновые основания;
- 12. Пентозофосфатный путь превращения глюкозы обеспечивает клетку:
- а). Гидрированным НАДФ;
- б). Пентозами;
- в). Гидрированным НАД;
- г). Гидрированным НАДФ и пентозами.
- 13. Роль общего пути катаболизма в клетке:
- а). путь поставки водорода органических веществ в дыхательную цепь;
- б). анаболические функции;
- в). путь поставки водорода органических веществ в дыхательную цепь и анаболические функции.
- г). Катаболические функции.
- 14. Кодон- это:
- а). триплет;

- б). 2 нуклеотидных остатка;
- в). пентаплет;
- г). Водорастворимый витамин группы В.
- 15. Первичная структура синтезируемого белка определяется первичной структурой:
- а). м-РНК;
- б). т-РНК;
- в). р-РНК.
- г). п-РНК

Описание показателей, критериев и шкалы оценивания компетенций Балльная структура оценки

Формы контроля

Промежуточная аттестация – 30 баллов.

Самостоятельная работа – 30 баллов

Итоговая аттестация – 40 баллов.

Всего – 100 баллов

Критерии определения сформированности компетенций на различных этапах их формирования

Критерии	Уровни сформирован	ности компетенций		
	Пороговый	Достаточный	Повышенный	
	Компетенция	Компетенция	Компетенция	
	сформирована.	сформирована.	сформирована.	
	Демонстрируется	Демонстрируется	Демонстрируется	
	недостаточный	достаточный	высокий уровень	
	уровень	уровень	самостоятельности,	
	самостоятельности	самостоятельности	высокая	
	практического	устойчивого	адаптивность	
	навыка	практического	практического	
		навыка	навыка	

Описание показателей, критериев и шкалы оценивания компетенций Правила получения баллов (лекции)

- 1. На лекции баллы начисляются за правильный письменный ответ на контрольные вопросы.
- 2. Работы, написанные одинаковым почерком, не оцениваются.
- 3. Баллы за пропущенные лекции не восполняются.

Правила получения баллов (тест, самостоятельная, экзамен):

В середине семестра рубежная аттестация в виде письменного теста (30 баллов). Самостоятельная работа (30 баллов). Во время сессии – экзамен (40 баллов) в виде письменного теста.

Методические материалы, определяющие процедуры оценивания результатов освоения дисциплины

Текущий контроль представляет собой проверку усвоения учебного материала теоретического и практического характера, регулярно осуществляемую на протяжении семестра. К достоинствам данного типа относится его систематичность, непосредственно коррелирующаяся с требованием постоянного и непрерывного мониторинга качества обучения, а также возможность балльно-рейтинговой оценки успеваемости обучающихся. Недостатком является фрагментарность и локальность проверки. Компетенцию целиком, а не отдельные ее элементы (знания, умения, навыки) при подобном контроле проверить

невозможно. К основным формам текущего контроля (текущей аттестации) можно отнести устный опрос, письменные задания, лабораторные работы, контрольные работы.

Промежуточная аттестация, как правило, осуществляется в середине семестра. Промежуточная аттестация помогает оценить более крупные совокупности знаний и умений, в некоторых случаях — даже формирование определенных профессиональных компетенций. Достоинства: помогает оценить более крупные совокупности знаний и умений, в некоторых случаях — даже формирование определенных профессиональных компетенций. Основные формы: зачет и экзамен.

Итоговая аттестация служит для проверки результатов обучения в целом.

Тестовые задания представлены в системе ТУИС

Программа составлена в соответствии с требованиями ОС ВО РУДН

Разработчик:

доцент департамента экологической безопасности и менеджмента качества продукции

Мазина С.Е.

Руководитель программы

Доцент департамента экологической безопасности и менеджмента качества продукции

/llej Харламова М.Д.