Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олег Арскандровичьное государственное автономное образовательное учреждение должность: Ректор дата подписания: 10.06.20 высщего образования «Российский университет дружбы народов»

Уникальный программный ключ:

са953а0120d891083f939673078ef Факультет физико-математических и естественных наук

Научно-образовательный институт физических исследований и технологий

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Релятивистская электроника

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

03.04.02 Физика

(код и наименование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

«Фундаментальная и прикладная физика»

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

2.

Целью освоения дисциплины «Релятивистская электроника» является формирование современного представления об основах физики и техники СВЧ, генерации высоковольтных импульсов, сильноточных электронных пучков и возможностях создания мощного импульсного излучения микроволнового диапазона.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Релятивистская электроника» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении

дисииплины (результаты освоения дисииплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ПК-1	Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта	ПК-1.1. Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости; ПК-1.2. Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Релятивистская электроника» относится к части, формируемой участниками образовательных отношений блока Б1 ОП ВО.

В рамках ОП ВО обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Релятивистская электроника».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению

запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ПК-1	Способен самостоятельно ставить конкретные	Математические методы в физике	Физика газовых разрядов Научно-исследовательская работа

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
	задачи научных	Физика нелинейных	преддипломная практика
	исследований в	процессов	
	области физики и	Физические принципы	
	решать их с помощью	ускорения	
	современной	Физические методы	
	аппаратуры и	диагностики	
	информационных	Физика лазеров	
	технологий с		
	использованием		
	новейшего		
	российского и		
	зарубежного опыта		

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Релятивистская электроника» составляет **4** зачетных единицы.

Таблица 4.1. Виды учебной работы по периодам освоения ОП ВО для <u>**ОЧНОЙ**</u>

формы обучения

Вид учебной работы		всего,	Семестр(-ы)			
		ак.ч.	1	2	3	4
Контактная работа, ак.ч.		54		54		-
Лекции (ЛК)		36		36		1
Лабораторные работы (ЛР)		-	ı	-	i	ı
Практические/семинарские занятия (СЗ)		18		18		ı
Самостоятельная работа обучающихся, ак.ч.		90		90		-
Контроль (экзамен/зачет с оценкой), ак.ч.				-	-	-
ак.ч.		144		144		-
Общая трудоемкость дисциплины	зач.ед.	4		4		-

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
электроники	Предмет «сильноточная релятивистская электроника». Коммутация больших токов. Сильноточные высоковольтные коммутаторы — разрядники. Источники высокого напряжения для сильноточных ускорителей электронов.	ЛК

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
	Сильноточные ускорители электронов, их	<u></u>
	типы и параметры.	
	Длинные линии. Коаксиальные линии.	
	Формирование импульсов напряжения	
	сильноточных ускорителей электронов.	
	Взрывная эмиссия электронов. Генерация	
Сильноточные	сильноточных релятивистских электронных	
ускорители электронов,	пучков (РЭП). Предельный ток	ЛК, СЗ
их типы и параметры.	транспортировки РЭП.	,
	Взрывоэмиссионный катод Коаксиальный	
	диод с магнитной изоляцией. Предельный ток	
	вакуумного диода Устойчивость тока	
	транспортировки. Виртуальный катод.	
Диагностика РЭП	Диагностика параметров РЭП наносекундной	
	длительности: энергии электронов, тока,	
	профиля плотности тока, питч-угла	
	траекторий.	ЛК
	Генерация СВЧ-излучения с помощью РЭП.	
	Черенковские СВЧ-источники: ЛБВ и ЛОВ.	
	Магнетрон. Виркатор. MILO. Гиротрон	
Диагностика параметров	Диагностика параметров мощных одиночных	
мощных одиночных	СВЧ-импульсов. Измерение длительности	
СВЧ-импульсов.	импульса, энергии, плотности мощности, типа	
	волны (моды), спектра.	HIL CO
	Плазма взрывоэмиссионного катода и ее	ЛК, СЗ
	влияние на параметры РЭП. Проблемы	
	генерации РЭП микросекундной длительности	
	со стабильными параметрами.	
Плазменный	Плазменный релятивистский генератор СВЧ-	
релятивистский	импульсов (ПРГ) – плазменный мазер.	
генератор СВЧ-	Управление частотой излучения ПРГ. Про-	ЛК, СЗ
импульсов (ПРГ) –	дольные моды, узкополосный и широкопо-	
плазменный мазер.	лосный режимы генерации СВЧ.	

^{*} - заполняется только по ${\bf \underline{OYHO\check{M}}}$ форме обучения: $\it \Pi K$ – лекции; $\it \Pi P$ – лабораторные работы; $\it C3$ – семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий	

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
	лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы обучающихся	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Лоза О.Т. Основы экспериментальной сильноточной релятивистской электроники: учебное пособие Москва: РУДН, 2014. 112 с. ISBN 978-5-209-05704-8
- 2. Лебедев И.В. Электронные устройства СВЧ. Электронные приборы и техника СВЧ. В 2-х томах. "Радиотехника", М.-2008, т.1, 2. Дополнительная литература:
- 1. Незлин М.В. Динамика пучков в плазме. М.: Энергоатомиздат, 1982.-218 с.
- 2. Миллер Р. Введение в физику сильноточных пучков заряженных частиц. М. "Мир" 1984. 432 с.
- 3. Бугаев С. П., Канавец В. И., Кошелев В. И., Черепенин В. А. Релятивистские многоволновые СВЧ-генераторы Новосибирск: Наука. Сиб. отд-ние, 1991.— 296 с.
- 4. Кузелев М.В., Рухадзе А.А., Стрелков П.С.. Плазменная релятивистская СВЧ-электроника: Учеб. пособие/ Москва: Изд. МГТУ им. Н.Э. Баумана, 2002. 543 с.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Лань» http://e.lanbook.com/
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
- реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

Учебное пособие:

Лоза О.Т. Основы экспериментальной сильноточной релятивистской электроники: учебное пособие Москва: РУДН, 2014. – 112 с. ISBN 978-5-209-05704-8 .*

- все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Релятивистская электроника» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

РАЗРАБОТЧИКИ:		
Директор, ИФИТ	A second	Лоза О.Т.
Лолжность БУП	Полпись	Фамилия И О

РУКОВОДИТЕЛЬ БУП:

Директор ИФИТ	Age .	Лоза О.Т.
Наименование БУП		Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:	,	
Директор ИФИТ	A second	Лоза О.Т.
Должность, БУП	Подпись	Фамилия И.О.