Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Факультет физико-математических и естественных наук Институт физических исследований и технологий

Рекомендовано МССН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Релятивистская и СВЧ электроника

Рекомендуется для направления подготовки/специальности 03.04.02 «Физика»

Направленность программы (профиль) Фундаментальная и прикладная физика

1. Цели и задачи дисциплины:

Курс излагается для студентов-физиков на 1-ом курсе магистратуры. Основной целью курса является овладение учащимися знаниями об основах физики и техники СВЧ, генерации высоковольтных импульсов, сильноточных электронных пучков и возможностях создания мощного импульсного излучения микроволнового диапазона.

2. Место дисциплины в структуре ОП ВО:

Дисциплина «Релятивистская и СВЧ электроника» относится к элективной части блока Б1.В.ДВ.01 учебного плана.

В таблице № 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО.

Таблица № 1 **Предшествующие и последующие дисциплины, направленные на формирование** компетенций

самостоятельно ставить практикум (по профилю	? Ш	$N_{\underline{0}}$	Шифр и наименование	Предшествующие	Последующие дисциплины
самостоятельно ставить практикум (по профилю	I	Π/Π	компетенции	дисциплины	(группы дисциплин)
конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего отечественного и зарубежного опыта	ПК сам кон нау в о рег сов апп институ	1	ПК-1: способность самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего отечественного и	дисциплины	Специальный физический

3. Требования к результатам освоения дисциплины:

В результате изучения дисциплины студент должен:

Знать: о типах СВЧ-волн, принципах их передачи и методах генерации, а также о некоторых сферах применения, основы высоковольтной техники, основы физики наносекундных процессов, приложения электроники больших мощностей.

Уметь: решать профессиональные задачи в соответствии с профильной направленностью магистерской программы и видами профессиональной деятельности: научно-исследовательская деятельность; проведение научных исследований поставленных проблем; формулировка новых задач, возникающих в ходе научных исследований; работа с научной литературой с использованием новых информационных технологий, слежение за научной периодикой; проведение физических исследований по заданной тематике; выбор технических средств, подготовка оборудования, работа на экспериментальных физических установках; выбор необходимых методов исследования; анализ получаемой физической информации с использованием современной вычислительной техники.

Владемь: способностью оперировать углубленными знаниями в области математики и естественных наук; способностью выдвигать новые идеи; способностью к свободному владению знаниями фундаментальных разделов физики и радиофизики, необходимыми для решения научно-исследовательских задач; способностью внедрять результаты прикладных научных исследований в перспективные приборы, устройства и системы, основанные на колебательно-волновых принципах функционирования; способностью описывать новые методики инженерно-технологической деятельности.

4. Объем дисциплины и виды учебной работы Общая трудоемкость дисциплины составляет 6 зачетных единиц.

Вид учебной работы	Всего	Модули			
	часов	1	2	3	4
Аудиторные занятия (всего)	136	36	32	36	32
В том числе:					
Лекции	68	18	16	18	16
Практические занятия (ПЗ)					
Семинары (С)	68	18	16	18	16
Лабораторные работы (ЛР)					
Самостоятельная работа (всего)	80		40		40
Общая трудоемкость час	216	36	72	36	72
зач. ед.	6	1	2	1	2

5. Содержание дисциплины

5.1. (Содержание разделов ди	сциплины				
№	Наименование раздела	Содержание раздела (темы)				
Π/Π	дисциплины					
1.	Основы физики и	Пассивные элементы СВЧ-техники				
	техники СВЧ	Диапазон СВЧ и его особенности. Волноводы. Волновой				
		вектор и фазовая скорость. Групповая скорость. Волновое				
		уравнение для волновода. Е- и Н-типы волн. Дисперсия.				
		Е- и Н-волны в прямоугольном волноводе. Структура полей и				
		токов. Критическая длина волны и дисперсия.				
		Е- и Н-типы волн в круглом волноводе. Структура полей.				
		Критическая длина волны и дисперсия.				
		Концепция парциальных волн. Коаксиальная линия и высшие				
		типы волн в ней.				
		Электрическая прочность. Волновод в режиме отсечки				
		(запредельный волновод). Затухание волн, единицы				
		измерения.				
		Е- и Н-тройники в прямоугольном волноводе, коаксиально-				
		волноводный тройник. Антенный переключатель. Двойной				
		волноводный тройник.				
		Характеристическое сопротивление волновода. Холостой ход				
		и короткое замыкание. Коэффициент стоячей волны (КСВ).				
		Согласование волноводов, дроссельное соединение,				
		четвертьволновый трансформатор.				
		Поглотители, калориметры, аттенюаторы. Направленный				
		ответвитель. Ферромагнитный резонанс и ферритовый				
		вентиль на основе прямоугольного волновода.				
		Полые резонаторы. Открытые резонаторы. Фокусировка				
		СВЧ-излучения, эллиптическое зеркало и параболическая				
		антенна.				
		Приборы СВЧ-диапазона и применения				
		Электронные эмиттеры (катоды). Движение электронов в				
		межэлектродном зазоре. Время и угол пролета. Наведенный				
		ток. Отбор энергии от электронного потока. Модуляция				
		электронного потока по скорости и по плотности.				
		Усилительный пролётный клистрон. Генераторный				
		отражательный клистрон. Клистронный умножитель частоты.				
		Многорезонаторный клистрон.				

		Эффект Вавилова-Черенкова. Дисперсионные характеристики. Пространственные гармоники. Измерение параметров замедляющих систем. Лампы бегущей волны (ЛБВ). Условие самовозбуждения усилителя с распределенной усилительной средой: мазера, лазера, и т.п. Продольные моды ЛБВ-генератора. Лампы обратной волны (ЛОВ) — карсинотроны Лампы бегущей волны (ЛБВ) М-типа. Лампы обратной волны (ЛОВ) М-типа; электронная система типа короткой оптики. Магнетроны Движение электрона в плоском и цилиндрическом магнетроне. Основы радиолокации. Эффект Доплера и селекция движущихся целей. Моноимпульсная локация. Нелинейная локация.
2.	Сильноточная релятивистская электроника	Высоковольтные импульсы и сильноточные электронные потоки Предмет «сильноточная релятивистская электроника». Коммутация больших токов. Сильноточные высоковольтные коммутаторы — разрядники. Источники высокого напряжения для сильноточных ускорителей электронов. Сильноточные ускорители электронов, их типы и параметры. Длинные линии. Коаксиальные линии. Формирование импульсов напряжения сильноточных ускорителей электронов. Взрывная эмиссия электронов. Взрывоэмиссионный катод. Генерация сильноточных релятивистских электронных пучков (РЭП). Предельный ток транспортировки РЭП. Коаксиальный диод с магнитной изоляцией. Предельный ток вакуумного диода Устойчивость тока транспортировки. Виртуальный катод. Диагностика параметров РЭП наносекундной длительности: энергии электронов, тока, профиля плотности тока, питч-угла траекторий. Генерация СВЧ-излучения с помощью сильноточных электронных потоков. Релятивистские сильноточные источники СВЧ-излучения. Черенковские СВЧ-источники: ЛБВ и ЛОВ. Магнетрон. Виркатор. МПСО. Гиротрон Диагностика параметров мощных одиночных СВЧ-импульсов. Измерение длительности импульса, энергии, плотности мощности, типа волны (моды), спектра. Плазма взрывоэмиссионного катода и ее влияние на параметры РЭП. Проблемы генерации РЭП микросекундной длительности со стабильными параметрами. Генерация наносекундных импульсов суб- и гигаваттной мощности. Причины ограничения длительности импульса, пути преодоления. Замедленные волны в пространственно- ограниченной плазме. Плазменный релятивистский генератор СВЧ-импульсов (ПРГ) — плазменный мазер. Управление частотой излучения ПРГ. Продольные моды, узкополосный и широкополосный режимы генерации СВЧ.

5.2. Разделы дисциплин и виды занятий

$N_{\underline{0}}$	Наименование раздела дисциплины	Лекц.	Практ.	Лаб.	CPC	Всего час.
Π/Π			зан.	зан.		
1	Основы физики и техники СВЧ	34	34		40	108
2	Сильноточная релятивистская	34	34		40	108
	электроника					

6. Лабораторный практикум не предусмотрен

7. Практические занятия (семинары)

/ • 11	7. практические занятия (семинары)								
No	№ раздела	Тематика практических занятий (семинаров)	Трудо-						
Π/Π	дисциплины		емкость						
			(час.)						
1	1	Использование СВЧ-энергии для нагрева: области	8						
2	2	Методы измерения параметров СВЧ-сигналов малой и	8						
		большой мощности							
3	3	Применение микроволн в биологии и медицине: области	8						
		применения и ограничения использования							
4	4	Применение микроволн для обороны и безопасности	8						
5	5	Транспортировка энергии в виде СВЧ-волн на большие	8						
		расстояния (сотни километров): проблемы и пути решения							
6	6	Использование СВЧ-энергии для нагрева: области	8						
		применения, преимущества, ограничения и недостатки							
7	7	Вакуумные и полупроводниковые СВЧ-генераторы:	8						
		сравнительные характеристики и области применения							
8	8	Радиолокация СВЧ-диапазона: принцип, используемые	8						
		элементы, области применения							

8. Материально-техническое обеспечение дисциплины:

Лекционный компьютер, компьютерный проектор, кабинет лекционных демонстраций.

9. Информационное обеспечение дисциплины

базы данных, информационно-справочные и поисковые системы:

телекоммуникационная учебно-информационная система (ТУИС)

Учебный портал РУДН

Научная электронная библиотека РУДН

http://www.edu.ru/ – федеральный образовательный портал.

http://genphys.phys.msu.ru/rus/demo/- кабинет физических демонстраций МГУ.

http://genphys.phys.msu.ru/rus/ofp/

<u>http://www.alpud.ru/-</u> автоматизированные лабораторные практикумы удаленного доступа.

http://prac-gw.sinp.msu.ru/atom.htm - атомный и ядерный практикум МГУ.

10. Учебно-методическое обеспечение дисциплины:

а) основная литература

- 1. Лебедев И.В. Техника и приборы СВЧ. В 2-х томах. М.: Высшая школа, 1970, т.1, 2.
- 2. Лоза О.Т. Основы экспериментальной сильноточной релятивистской электроники: Учеб.пособие. М.: РУДН, 2014. 112 с. ISBN 978-5-209-05704-8.
- 3. Андреев В.В., Балмашнов А.А., Корольков В.И., Лоза О.Т., Милантьев В.П. Физическая электроника и ее современные приложения: Учеб.пособие. М.: РУДН, 2008. 383 с.
- 4. Месяц Г.А. Импульсная энергетика и электроника. М.: Наука, 2004.

б) дополнительная литература

- 1. Никольский В.В., Никольская Т.И. Электродинамика и распространение радиоволн, 3е изд. М.: Наука, 1989. 546 с.
- 2. Шевчик В.Н., Шведов Г.Н., Соболева А.В. Волновые и колебательные явления в электронных потоках на сверхвысоких частотах. Саратов: Изд.-во СГУ. 1963.
- 3. Вайнштейн Л.А., Солнцев В.А. Лекции по сверхвысокочастотной электронике. М.: Сов.радио, 1973.
- 4. Незлин М.В. Динамика пучков в плазме. М.: Энергоатомиздат, 1982. 218 с.
- 5. Миллер Р. Введение в физику сильноточных пучков заряженных частиц. М.: Мир, 1984. 432 с.
- 6. Бугаев С.П., Канавец В.И., Кошелев В.И., Черепенин В.А. Релятивистские многоволновые СВЧ-генераторы. Новосибирск: Наука. Сиб. отд-ние, 1991. 296 с.
- 7. Кузелев М.В., Рухадзе А.А., Стрелков П.С.. Плазменная релятивистская СВЧэлектроника: Учеб.пособие / М: Изд. МГТУ им. Н.Э. Баумана, 2002. – 543 с.
- 8. Литвинов Е.А. Сильноточные релятивистские электронные пучки. Часть 1 Физика пучков // Соросовский образовательный журнал. − 1998. − № 6. − С. 100–105.
- 9. Федосов А.И., Литвинов Е.А., Беломытцев С.Я., Бугаев С.П. К расчёту характеристик электронного пучка, формируемого в диодах с магнитной изоляцией // Изв. Вузов СССР. Физика. -1977. -№ 10. C. 134.
- 10. Месяц Г.А. Эктон лавина электронов из металла // Успехи физических наук. 1995. Т. 165. № 6. С. 601—626.

11. Методические указания для обучающихся по освоению дисциплины (модуля)

Необходимо обеспечить себя рекомендованными учебными материалами. Для получения глубоких и прочных знаний, твердых навыков и умений, необходима, кроме проработки лекционного материала, систематическая самостоятельная работа студента. Дополнить конспект лекций, выделить главное студент должен самостоятельно, пользуясь предлагаемыми учебными пособиями.

Самостоятельная работа нужна как для усвоения лекционного (теоретического) материала, так и для подготовки к лабораторным работам и выполнению домашнего занятия. Самостоятельная работа необходима и при подготовке к контрольным мероприятиям (тестам).

Рефераты предлагаются для написания только в случае заведомо низкой, менее 51, суммы баллов, набранной учащимся в течение семестра. Темы рефератов назначаются преподавателем. Оценка производится исходя из объема и качества представленной работы. Форматные требования к набранным на компьютере рефератам, а также презентационным тезисам: полуторный межстрочный интервал; кегль — 14; цитирование, сноски, библиография — в соответствии с принятыми стандартами. В случае затруднений, связанных с оформлением подготовленных текстов, студент может проконсультироваться у преподавателя. Все имеющиеся в реферате сноски тщательно выверяются и снабжаются «адресами». От обучающихся требуется внимательное отношение к орфографии, пунктуации и стилю изложения, так как погрешности в языке влияют, и существенно, на чистоту аргументации, а следовательно, и на общую оценку.

Случаи плагиата должны быть исключены. К плагиату относится:

- а) включение в свою работу выдержек из работ других авторов без указания на это (в виде соответствующей ссылки);
 - б) близкий к тексту пересказ какого-то «места» из чужой работы без отсылки к ней;
 - в) использование чужих идей без указания первоисточника.

Темами экзаменационных билетов являются все темы лекций. На экзамене разрешается пользоваться любой литературой и конспектами лекций на бумажном и электронном носителях, но только при подготовке вопросов билета. Дополнительные вопросы на экзамене – их число и тематика – определяются количеством успешно решенных задач домашних заданий и тестов.

12. Особенности реализации дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Реализация дисциплины, текущий контроль и промежуточная аттестация для лиц с ограниченными возможностями здоровья и инвалидов осуществляются с учетом специфики освоения и дидактических требований, исходя из индивидуальных психофизических особенностей и в соответствии с индивидуальной программой реабилитации по личному заявлению обучающегося.

В процессе обучения предусматриваются различные формы предоставления необходимой учебной и учебно-методической информации (визуально, в том числе с укрупненным шрифтом, аудиально и т. п.), допускаются использование студентом технических средств фиксации информации (аудио-, фото- или видеотехника) и присутствие на аудиторных занятиях ассистента (помощника, сопровождающего, сурдо- или тифлосурдопереводчика и т. п.), осуществляющего техническое сопровождение учебного процесса для студента.

Допускается частично дистанционное обучение с предоставлением необходимой учебной и учебно-методической информации средствами телекоммуникационной сети Интернет. Предусматриваются различные формы текущего контроля качества освоения дисциплины, достижения запланированных результатов обучения и уровня сформированности заявленных в ООП компетенций: устно, в том числе практические задания и контрольные работы с пояснением хода выполнения; письменно, в том числе конспекты ответов на вопросы практических занятий по разделам дисциплины; устно дистанционно; письменно дистанционно.

Во всех формах текущего контроля используются общие критерии оценивания. Процедура промежуточной аттестации проводится с учетом психофизических особенностей и состояния здоровья студента: допускается присутствие ассистента, осуществляющего техническое сопровождение процедуры; используются адаптированные оценочные средства; допускаются различные формы ответа (устно, письменно, с использованием необходимых технических средств и т. п.); допускается дистанционная форма проведения зачета или экзамена (например, с использованием программы Skype в предварительно согласованное время); при необходимости предоставляется дополнительное время для подготовки к ответу. Независимо от формы организации процедуры промежуточной аттестации используются общие критерии оценивания.

13. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Шкала оценок Соответствие систем оценок (согласно Приказу Ректора № 996 от 27.12.2006 г.)

Баллы БРС	Традиционные оценки в РФ	Баллы для перевода оценок	Оценки	Оценки
96 100	Ē	95-100	5+	A
86-100	5	86-94	5	В
69-85	4	69-85	4	С
<i>51.6</i> 0	2	61-68	3+	D
51-68	3	51-60	3	Е
0.50	2	31-50	2+	FX
0-50	2	0-30	2	F
51-60	Зачет		Зачет	Passed

Паспорт фонда оценочных средств по дисциплине Релятивистская и СВЧ электроника (Основы физики и техники СВЧ, 5-й курс, 1-й семестр) Направление/Специальность: 03.04.02 «Физика» специализация "Фундаментальная и прикладная физика"

			Наимен	ование (оценочного средства		
части	Контролируемый раздел дисциплины	Контролируемая тема дисциплины	Текущий Промежуточная контроль аттестация				
Код контролируемой компетенции или ее			Тест	Выполнение ДЗ	Экзамен/Зачет	Баллы темы	Баллы раздела
ПК-1	Раздел 1: Основы физики и техники	Тема 1: Пассивные элементы СВЧ-техники	17	27		44	
	СВЧ	Тема 2. Приборы СВЧ- диапазона и применения	21	6	29	27	71
		ИТОГО:	38	33	29	71	100

Паспорт фонда оценочных средств по дисциплине Релятивистская и СВЧ электроника (Сильноточная релятивистская электроника, 5-й курс, 2-й семестр)

Направление/Специальность: 03.04.02 «Физика» специализация "Фундаментальная и прикладная физика"

			Hai		ние оценочного едства			
части			Текущий Промежуточная контроль аттестация					
Код контролируемой компетенции или ее ч	Контролируемый раздел дисциплины	Контролируемая тема дисциплины	Тест	Выполнение ДЗ	Экзамен/Зачет	Баллы темы	Баллы раздела	
ПК-1	Раздел 2: Сильноточная релятивистская	Тема 1: Высоковольтные импульсы и сильноточные электронные потоки	18	24		42		
	электроника	Тема 2. Генерация СВЧ- излучения с помощью сильноточных электронных потоков.	18	6	34	24	66	
		итого:	36	30	34	66	100	

Раздел I. Основы физики и техники СВЧ

Примерные тестовые задания

- 1. Какие волноводы применяются для передачи волн со сколь угодно низкими частотами?
- 2. В каких волноводах без диэлектриков фазовая скорость волны может быть равна скорости света?
- 3. В волноводе прямоугольного сечения волна какого типа может иметь "0"-й индекс по одной из координат:
- 4. В волноводе прямоугольного сечения с волной H10 необходимо прорезать щель, не мешающую его работе. Где это можно сделать?
- 5. Где начинается СВЧ-пробой волновода прямоугольного сечения с волной Н10 при превышении мощностью порогового значения?
- 6. Какая волна является низшей для волновода круглого сечения?
- 7. Какую волну применяют для минимизации потерь в волноводе круглого сечения?
- 8. Одинаковые волноводы круглого сечения с фланцами на концах соединяются последовательно. При каком типе волн можно не обеспечивать хороший контакт между фланцами?
- 9. Некоторая Е-волна в волноводе круглого сечения и некоторая Н-волна в волноводе прямоугольного сечения имеют равные фазовые скорости. Как соотносятся их групповые скорости?
- 10. Может ли коаксиальный волновод быть запредельным для некоторой области частот?
- 11. В каких единицах обычно измеряются потери в волноводах при затухании волн?
- 12. В импульсном СВЧ-калориметре увеличили массу жидкости, поглощающей излучение. Как изменится показание калориметра, т.е. приращение объема жидкости при нагреве, если энергия нагрева не изменилась?
- 13. Как характеристическое сопротивление волновода прямоугольного сечения с волной H10 меняется при увеличении размера узкой стенки?
- 14. Какая компонента электромагнитного поля определяет сопротивление связи волны в волноводе?
- 15. Какой тип колебаний в призматическом резонаторе тождественен типу Н101?
- 16. Какой тип волн электрического типа является низшим в цилиндрическом резонаторе?
- 17. Какой тип волн магнитного типа является низшим в цилиндрическом резонаторе?

Задачи и упражнения

- 1. Какие типы волн могут распространяться в заполненном воздухом прямоугольном волноводе сечением 10x4 см при частоте f = 5 Γ Г χ ?
- 2. Размеры поперечного сечения прямоугольного волновода a=2 см, b=1 см. Перечислить типы волн, способные переносить энергию по волноводу, если f=10, 20, 30 ГГц (внутренняя среда воздух).
- 3. Какие типы волн могут распространяться в квадратном волноводе со стороной 1 см при частоте $10 \ \Gamma \Gamma \mu$? Волновод заполнен диэлектриком с относительной проницаемостью $\epsilon = 2,6$.
- 4. Определить критическую длину волны, критическую частоту и длину волны в прямоугольном волноводе для основного типа H10. Размеры поперечного сечения волновода 23х10 мм. Частота колебаний 10 ГГц (внутренняя среда воздух).
- 5. Определить критическую длину волны, критическую частоту и длину волны в прямоугольном волноводе для волны типа Е11. Размеры поперечного сечения 4х3 см. Частота колебаний 10 ГГц.
- 6. Прямоугольный волновод сечением 23x10 мм заполнен диэлектриком (ε =2,25, σ =0, μ =1). Частота колебаний 8,4 ГГц. Определить фазовую скорость и длину волны основного типа колебаний.

- 7. Определить размеры поперечного сечения квадратного волновода, в котором при частоте 4 ГГц может распространяться лишь низшая волна электрического типа.
- 8. Определить размеры поперечного сечения прямоугольного волновода, при которых может распространяться лишь основной тип волны. Длина волны генератора 10 см.
- 9. Длина волны в волноводе при работе на основном типе волны составляет 4,5 см. Размеры поперечного сечения волновода 2,6х1,3 см. Найти частоту передаваемых колебаний.
- 10. Фазовая скорость волны типа H10 в прямоугольном волноводе равна 5 с, где с скорость света. Определить размеры волновода, если длина волны в свободном пространстве равна 10 см.
- 11. Найти групповую скорость волны типа H10 в прямоугольном волноводе сечением 72х34 мм при частоте поля 3 ГГц.
- 12. В волноводе, заполненном диэлектриком с относительной проницаемостью ε = 2,25, распространяется волна с фазовой скоростью 3x108 м/с. Определить групповую скорость.
- 13. Найти фазовую скорость волны в металлическом волноводе, заполненном воздухом, если скорость распространения энергии составляет 1,8х108м/с.
- 14. Выбрать размеры медного прямоугольного волновода для передачи сигнала в полосе частот от 3,2 до 4,0 ГГц в одномодовом режиме. Для волновода длиной L=100 м найти разницу времени прохождения сигнала для крайних частот рабочей полосы. Учесть, что нижняя рабочая частота выбирается больше критической не менее, чем на 15%.
- 15. Определить характеристическое сопротивление для волны типа H10 в прямоугольном волноводе сечением 72х34 мм при частоте колебаний 3 ГГц.
- 16. Прямоугольный волновод сечением 23x10 мм заполнен диэлектриком и работает на основном типе волны. Определить диэлектрическую проницаемость исследуемого вещества, если при частоте сигнала $10 \Gamma\Gamma$ ц длина волны в волноводе равна 22,6 мм.
- 17. Волна типа H01 в прямоугольном волноводе при работе возбуждающего генератора на длине волны 10 см вчетверо короче, чем при работе генератора на волне 20 см. Найти размер поперечного сечения волновода.
- 18. В каких точках поперечного сечения прямоугольного волновода напряженность магнитного поля равна нулю для волн типа H01, H02, H10, H11, H12, E11, E12?
- 19. В каких точках поперечного сечения прямоугольного волновода напряженность электрического поля равна нулю для волн типа H01, H02, H10, H11, H12, E11, E12?
- 20. Записать поле бегущей волны H10 и начертить структуру поля в поперечном и продольном сечениях прямоугольного волновода.
- 21. Начертить картину поверхностных токов на стенках прямоугольного волновода для бегущей волны H10 и указать положение излучающих и неизлучающих щелей.
- 22. Нарисовать картину полей в поперечном и продольном сечениях прямоугольного волновода для волн типа H30 и H02.
- 23. Начертить картину токов на стенках прямоугольного волновода для волн типа Н30 и Н02 и указать положение излучающих и неизлучающих щелей.
- 24. Начертить распределение полей в поперечном и продольном сечениях квадратного волновода для волн H11 и E11.
- 25. В каких точках сечения прямоугольного волновода с волной типа Н10 вектор напряженности магнитного поля имеет круговую поляризацию?
- 26. В какой плоскости будет вращаться вектор? Сечение волновода 7,2х3,4 см, длина волны генератора 10 см.
- 27. В каких точках сечения прямоугольного волновода с волной Н10 вектор напряженности магнитного поля имеет линейную поляризацию?
- 28. Какая максимальная мощность может быть передана по прямоугольному волноводу сечением 23x10 мм, работающему на частоте 10 ГГц? Волновод заполнен воздухом, предельно допустимое значение напряженности электрического поля 30 кВ/см.

29. Вдоль прямоугольного волновода сечением 50x25 мм, работающего на волне H10, передается средняя мощность 10 кВт. Частота колебаний 5,5 ГГц. Определите амплитуду вектора напряженности электрического поля на оси волновода, а также максимальное значение поверхностной плотности тока на стенках.

Примерный перечень тем рефератов

- 1. Транспортировка энергии в виде СВЧ-волн на большие расстояния (сотни километров): проблемы и пути решения
- 2. Использование СВЧ-энергии для нагрева: области применения, преимущества, ограничения и недостатки
- 3. Вакуумные и полупроводниковые СВЧ-генераторы: сравнительные характеристики и области применения
- 4. Радиолокация СВЧ-диапазона: принцип, используемые элементы, области применения
- 5. Микроволновая техника в медицине: области применения и ограничения использования

Раздел II. Сильноточная релятивистская электроника

Задачи и упражнения

- 1. Чем определяется диапазон коммутируемых напряжений разрядника "на искажении поля"? Пояснить.
- 2. ГИН по схеме Аркадьева-Маркса собран из импульсных конденсаторов ИК-100-0,4 (напряжение до 100 кВ, емкость С=0.4 мкФ, паразитная индуктивность L=0.15 мкГн). Во избежание смены полярности заряда при работе ускорителя на низкоомную нагрузку (т.е. при коротком замыкании) последовательно каждому конденсатору включают так называемый демпфирующий резистор, который предотвращает колебания тока. Каково минимальное сопротивление R этих резисторов?
- 3. Задача в продолжение: ГИН по схеме Аркадьева-Маркса имеет 10 каскадов из конденсаторов ИК-100-0,4 с демпфирующими резисторами с минимальным сопротивлением. Определить потери напряжения и тока от включения этих резисторов при работе ускорителя с диодом с импедансом 100 Ом и напряжением заряда 50 кВ.
- 4. Нужно ли пытаться создать "идеальный" магнитопровод, связывающий первичную и вторичную обмотку импульсного трансформатора Тесла, для большей эффективности передачи энергии. Если нужно, то зачем, если нет почему. "Идеальный" магнитопровод обеспечивает коэффициент связи обмоток, близкий к единице.
- 5. Может ли работать сильноточный ускоритель релятивистских электронов без формирователя импульса?
- 6. Ускоритель с одинарной формирующей линией с импедансом 100 Ом, заряженной до 1 MB, подключили к диоду. Импеданс (т.е. сопротивление) диода больше сопротивления согласованной нагрузки. Каково будет напряжение на диоде?
- 7. Ускоритель представляет собой ГИН по схеме Аркадьева-Маркса из 10 каскадов конденсаторов с напряжением до 100 кВ, который заряжает одинарную формирующую линию. Какова максимальная энергия электронов, если диод согласован с формирующей линией?
- 8. Коаксиальная одинарная формирующая линия с максимально возможным напряжением должна быть собрана в трубе с диаметром 544 мм, играющей роль внешнего электрода. В качестве диэлектрика используется трансформаторное масло с диэлектрической проницаемостью ε = 2.2. Каков будет импеданс формирующей линии?

- 9. Задача в продолжение: Коаксиальная одинарная формирующая линия должна быть собрана в трубе с диаметром 544 мм, играющей роль внешнего электрода. В качестве диэлектрика используется трансформаторное масло с диэлектрической проницаемостью ε = 2.2 и пробойным напряжением 200 кВ/см. Каково может быть максимальное напряжение заряда линии?
- 10. Двойная коаксиальная формирующая линия (ДФЛ) с длиной L = 1.8 м согласована с нагрузкой импедансом 36 Ом. Линия заполнена дистиллированной водой с ε = 81 в качестве диэлектрика. Определить диаметры внутренних проводников линии, если диаметр внешнего равен 1 м, а толщина стенок труб пренебрежимо мала. Определить длительность импульса на нагрузке
- 11. Трубчатый тонкостенный РЭП с радиусом r0=1 см и максимально возможным током инжектируют в трубу с радиусом R0=2.72 см. Сильное однородное магнитное поле направлено вдоль оси. Полная энергия электронов соответствует релятивистскому фактору γ=2. Каков будет потенциал пучка?
- 12. Трубчатый тонкостенный РЭП с радиусом r0=1 см инжектируют в трубу с радиусом R0=2.72 см. Сильное однородное магнитное поле направлено вдоль оси. Полная энергия электронов соответствует релятивистскому фактору γ =2. Какой максимальный ток можно транспортировать? Какова будет в этом случае скорость электронов пучка?
- 13. Трубчатый тонкостенный РЭП с радиусом r0=1 см и максимально возможным током инжектируют в трубу с радиусом R0=2.72 см. Сильное однородное магнитное поле направлено вдоль оси. Полная энергия электронов соответствует релятивистскому фактору γ=2. Как изменятся ток, потенциал пучка и скорость электронов, если радиус трубы R0 далее увеличивается еще вдвое?
- 14. РЭП генерируют в коаксиальном диоде с магнитной изоляцией, радиус катода r0=1 см, радиус анодной трубы R0=2.72 см, напряжение в диоде U=511 кВ. Чему равен ток I в этой трубе, если магнитное поле однородно?
- 15. РЭП генерируют в коаксиальном диоде с магнитной изоляцией, радиус катода r0=1 см, радиус анодной трубы R0=2.72 см, напряжение в диоде U=511 кВ. Чему равны скорости электронов в этой трубе, если магнитное поле однородно?
- 16. РЭП генерируют в коаксиальном диоде с магнитной изоляцией, радиус катода r0=1 см, радиус анодной трубы R0=2.72 см, напряжение в диоде U=511 кВ. Далеко справа труба расширяется до радиуса R1 = 7.39 см. Какой ток I идет в этой трубе, если магнитное поле однородно? Какова скорость электронов?
- 17. РЭП генерируют в коаксиальном диоде с магнитной изоляцией, радиус катода r=1 см, радиус анодной трубы R=2.72 см, напряжение в диоде 511 кВ. Для измерения напряжения на катоде установлен емкостной делитель, его внутренняя обкладка отделена от анодной трубы диэлектриком с толщиной $\delta=0.33$ мм и диэлектрической проницаемостью $\epsilon=4.85$ (фольгированный стеклотекстолит, емкость 13 пФ/см2). Какое напряжение на делителе будет зарегистрировано импульсным вольтметром с большим входным сопротивлением?
- 18. РЭП генерируют в коаксиальном диоде с магнитной изоляцией, радиус катода r=1 см, радиус анодной трубы R=2.72 см, напряжение в диоде 511 кВ. Для измерения напряжения на катоде установлен емкостной делитель, его внутренняя обкладка отделена от анодной трубы диэлектриком с толщиной $\delta=0.33$ мм и диэлектрической проницаемостью $\epsilon=4.85$ (фольгированный стеклотекстолит, емкость Cf=13 пФ/см²). Какой длины L должен быть этот делитель, чтобы уверенно регистрировать импульсы напряжения длительностью $\tau=100$ нс с помощью осциллографа с входным сопротивлением Rosc=50 Oм?
- 19. РЭП генерируют в коаксиальном диоде с магнитной изоляцией, радиус катода r0=1 см, радиус анодной трубы R0=2.72 см, напряжение в диоде U=511 кВ. Какое напряжение и будет измерено на шунте обратного тока с сопротивлением R=10-2 Ом, которым измеряют ток РЭП?

20. РЭП генерируют в коаксиальном диоде с магнитной изоляцией, радиус катода r0=1 см, радиус анодной трубы R0=2.72 см, напряжение в диоде 511 кВ. Какое напряжение и будет измерено на поясе Роговского, которым измеряют ток РЭП, если число витков в поясе N=500, а шунтирующий резистор имеет сопротивление Rsh = 1 Ом?

Примерные тестовые задания

- 1. Как изменяется напряжение срабатывания газового двухэлектродного разрядника при увеличении давления газа?
- 2. Возможно ли измерение амплитуды высокого переменного напряжения электростатическим вольтметром, отградуированным на измерение постоянного напряжения
- 3. Что происходит в генераторе импульсного напряжения Аркадьева-Маркса при увеличении сопротивлений зарядных резисторов?
- 4. В резонанс-трансформаторе Тесла: можно ли передать всю энергию из первичного контура во вторичный, если коэффициент связи меньше 1?
- 5. Для чего применяют индуктивный накопитель в импульсном источнике высокого напряжения?
- 6. Чему равна амплитуда прямоугольного импульса, сформированного на одинарной формирующей линии без потерь и заряжаемой до напряжения U?
- 7. Чему равна амплитуда прямоугольного импульса, сформированного генератором на двойной формирующей линии без потерь, заряжаемой до напряжения U?
- 8. Как зависит максимальное напряжение Umax заряда коаксиальной формирующей линии с масляным заполнением и фиксированным внешним габаритом от диаметра внутреннего проводника "d"?
- 9. Что вырабатывает генератор на одинарной формирующей линии, если сопротивление нагрузки равно импедансу линии?
- 10. Что вырабатывает генератор на одинарной формирующей линии, если сопротивление нагрузки в 2 раза превышает импеданс линии?
- 11. Что вырабатывает генератор на двойной формирующей линии, если сопротивление нагрузки равно импедансу каждой из линий?
- 12. Что вырабатывает генератор на двойной формирующей линии, если сопротивление нагрузки в 2 раза превышает импеданс каждой из линий?
- 13. Чем ограничен ток пучка, сформированного взрывоэмиссионным катодом в вакуумном коаксиальном диоде с магнитной изоляцией (КДМИ) и транспортируемого в однородном магнитном поле в трубе того же диаметра, что и анод КДМИ
- 14. Что нужно делать для увеличения скорости электронов трубчатого аксиальносимметричного пучка, транспортируемого в вакуумной трубе в магнитном поле?
- 15. Электронный пучок формируется в вакуумном коаксиальном диоде с магнитной изоляцией (КДМИ) и напряжением 511 кВ и транспортируется в однородном магнитном поле в трубе того же диаметра, что и анод КДМИ. Как изменится ток, если на значительном расстоянии от диода диаметр этой трубы увеличить в 2 раза?
- 16. Электронный пучок формируется в вакуумном коаксиальном диоде с магнитной изоляцией (КДМИ) и напряжением 511 кВ и транспортируется в однородном магнитном поле в трубе того же диаметра, что и анод КДМИ. Как изменится ток, если на значительном расстоянии от диода диаметр этой трубы уменьшить в 2 раза?
- 17. Потенциал трубчатого электронного пучка в вакуумной трубе в однородном магнитном поле измеряется емкостным делителем. Как изменится его показание, если в области установки делителя магнитное поле несколько ослабить, а в других частях установки не менять?
- 18. В импульсном СВЧ-калориметре увеличили массу жидкости, поглощающей излучение. Как изменится показание калориметра, т.е. приращение объема жидкости при нагреве, если энергия нагрева не изменилась?

- 19. При работе СВЧ-генератора на основе ЛБВ с пространственно-периодическим волноводом: что будет с частотой СВЧ-излучения, если снизится напряжение на катоде электронной пушки, а остальные параметры не изменятся?
- 20. При работе СВЧ-генератора на основе ЛОВ с пространственно-периодическим волноводом: что будет с частотой СВЧ-излучения, если снизится напряжение на катоде электронной пушки, а остальные параметры не изменятся?
- 21. При работе плазменного СВЧ-генератора что будет с частотой СВЧ-излучения, если снизится напряжение на катоде электронной пушки, а остальные параметры не изменятся?
- 22. При работе плазменного СВЧ-генератора что будет с частотой СВЧ-излучения, если снизится концентрация плазмы, а остальные параметры не изменятся?
- 23. Как изменится пороговая длина плазменного СВЧ-генератора, если уменьшить коэффициент отражения волн от границы?
- 24. Как изменится интервал между частотами соседних продольных мод колебаний СВЧ-генератора на основе ЛБВ при увеличении его длины?

Перечень тем рефератов

- 1. Особенности передачи и блокирования информации с помощью микроволн
- 2. Методы измерения параметров СВЧ-сигналов малой и большой мощности.
- 3. Применение микроволн в биологии и медицине: области применения и ограничения использования
- 4. Применение микроволн для обороны и безопасности
- 5. Транспортировка энергии в виде СВЧ-волн на большие расстояния (сотни километров): проблемы и пути решения
- 6. Использование СВЧ-энергии для нагрева: области применения, преимущества, ограничения и недостатки
- 7. Вакуумные и полупроводниковые СВЧ-генераторы: сравнительные характеристики и области применения
- 8. Радиолокация СВЧ-диапазона: принцип, используемые элементы, области применения

Перечень вопросов итоговой аттестации по курсу

ОСНОВЫ ФИЗИКИ И ТЕХНИКИ СВЧ

Перечень вопросов

- 1. Волны типа ТЕМ в волноводе
- 2. Дисперсия волн в волноводе
- 3. Е- и Н-типы волн в волноводе
- 4. Е-волны в волноводе прямоугольного сечения. Структура полей и токов. Критическая длина волны и дисперсия
- 5. Н-волны в волноводе прямоугольного сечения. Структура полей и токов. Критическая длина волны и дисперсия
- 6. Е-волны в волноводе круглого сечения. Структура полей и токов. Критическая длина волны и дисперсия
- 7. Н-волны в волноводе круглого сечения. Структура полей и токов. Критическая длина волны и дисперсия
- 8. Концепция парциальных волн
- 9. Коаксиальная линия и типы волн в ней
- 10. Мощность волны типа H_{10} в волноводе прямоугольного сечения
- 11. Затухание волн, единицы измерения потерь
- 12. Характеристическое и эквивалентное сопротивления волновода прямоугольного сечения
- 13. Отражения волны от нагрузки. Холостой ход и короткое замыкание

- 14. Коэффициент стоячей волны (КСВ). Измерение КСВ в прямоугольном и круглом волноводе
- 15. Калориметр
- 16. Ферромагнитный резонанс и ферритовый вентиль на основе прямоугольного волновода с волной H10
- 17. Эффект Фарадея и фарадеевский (нерезонансный) вентиль в круглом волноводе с волной Н11
- 18. Коаксиальные резонаторы: четвертьволновый и полуволновый
- 19. Призматический резонатор
- 20. Цилиндрический резонатор
- 21. Открытые резонаторы
- 22. Фокусировка СВЧ-излучения, эллиптическое зеркало и параболическая антенна
- 23. Преобразователи типов волн. Коаксиально-волноводные переходы. Фильтры.
- 24. Рупорные антенны. Диаграмма направленности. Коэффициент усиления антенны.
- 25. Излучение Вавилова-Черенкова
- 26. Замедленные волны. Коэффициент замедления
- 27. Сопротивление связи
- 28. Замедленные волны в пространственно-периодическом волноводе. Пространственные гармоники
- 29. Измерение параметров замедляющих систем методом малого возмущающего тела
- 30. Движение электрона в межэлектродном зазоре. Время и угол пролета. Наведенный ток.
- 31. Отбор энергии от электрона и от электронного потока
- 32. Модуляция электронного потока по скорости и по плотности.
- 33. Преобразование модуляции электронного потока по скорости в модуляцию по плотности методом дрейфа
- 34. Преобразование модуляции электронного потока по скорости в модуляцию по плотности методом тормозящего поля
- 35. Усилительный пролётный клистрон
- 36. Генераторный отражательный клистрон
- 37. Лампы бегущей волны (ЛБВ) О-типа.
- 38. Условие самовозбуждения усилителя с распределенной усилительной средой: мазера, лазера, и т.п. Продольные моды ЛБВ-генератора.
- 39. Лампы обратной волны (ЛОВ) О-типа-карсинотроны.
- 40. Лампы бегущей волны (ЛБВ) М-типа.
- 41. Лампы обратной волны (ЛОВ) М-типа; электронная система типа короткой оптики.
- 42. Эффект Ганна и режимы работы диода.
- 43. Простейший радар: назначение, устройство и взаимосвязь компонентов. Методы определения расстояния до цели, направления на цель, скорости цели.
- 44. Эффект Доплера и определение скорости движущихся объектов.
- 45. Моноимпульсная локация
- 46. Принцип действия нелинейного радиолокатора

Задачи (качественные)

- 1. Массу m жидкости, поглощающей CBЧ-излучение в импульсном калориметре, увеличили в 2 раза. Как изменится показание калориметра, т.е. приращение ΔV объема жидкости при нагреве, если энергия нагрева Q не изменилась?
- 2. "Неизлучающие щели": Как можно разрезать (узкую // широкую) стенку (прямоугольного // круглого // коаксиального) волновода очень тонкой фрезой (т.е. сделать очень узкую щель) так, чтобы не нарушить распространение волны типа (TM_{mn} // TE_{mn} // TEM).
- 3. "Неизлучающие щели": Как можно разрезать стенку (узкую // широкую // торцевую) (прямоугольного // круглого // коаксиального) резонатора очень тонкой фрезой (т.е. сделать очень узкую щель) так, чтобы не нарушить колебания типа (TM_{mnp} // TE_{mnp} // TEM).
- 4. Как увеличить интервал между частотами соседних продольных мод колебаний ЛБВ-генератора?

- 5. Как изменится пороговая длина ЛБВ-генератора, если уменьшить коэффициент отражения волны от границы?
- 6. При работе СВЧ-генератора ЛБВ-О что будет с частотой СВЧ-излучения, если снизится напряжение на катоде, а остальные параметры не изменятся? Пояснить на графике зависимости $\omega(k_z)$.
- 7. При работе СВЧ-генератора ЛОВ-О что будет с частотой СВЧ-излучения, если снизится напряжение на катоде, а остальные параметры не изменятся? Пояснить на графике зависимости $\omega(k_z)$.

Дополнительные вопросы

- 1. Фазовая скорость.
- 2. Групповая скорость
- 3. Структура полей и токов волн в прямоугольном, круглом и коаксиальном волноводе.
- 4. Способ(ы) измерения частоты СВЧ-волны
- 5. Способ(ы) измерения мощности СВЧ-волны
- 6. Способ(ы) увеличения напряженности поля СВЧ-волны
- 7. Способ(ы) отражения СВЧ-волны в волноводе
- 8. Волновод в режиме отсечки (запредельный волновод)
- 9. Е-тройник в прямоугольном волноводе
- 10. Н-тройник в прямоугольном волноводе
- 11. Двойной волноводный тройник
- 12. Дроссельное соединение фланцев волновода
- 13. Четвертьволновый трансформатор
- 14. Направленный ответвитель
- 15. Преобразователь волны H10 прямоугольного волновода в волну H11 круглого волновода.
- 16. Коаксиально-волноводный преобразователь
- 17. СВЧ-диод: вакуумный, полупроводниковый
- 18. Поглотитель (согласованная нагрузка)
- 19. Аттенюатор
- 20. Ферритовый резонансный вентиль на основе прямоугольного волновода с волной Н10
- 21. Фарадеевский нерезонансный вентиль в круглом волноводе
- 22. Ферритовый циркулятор
- 23. Резонансный коаксиальный волномер

СИЛЬНОТОЧНАЯ РЕЛЯТИВИСТСКАЯ ЭЛЕКТРОНИКА

Перечень вопросов

- 1. Сильноточные высоковольтные коммутаторы тока разрядники: тригатрон; разрядник «на искажении поля».
- 2. Измерение высокого напряжения постоянного и переменного электростатическим вольтметром.
- 3. Генератор импульсного напряжения по схеме Аркадьева-Маркса.
- 4. Резонанс-трансформатор Тесла.
- 5. Импульсный источник высокого напряжения с индуктивным накопителем.
- 6. Генератор прямоугольного импульса на одинарной формирующей линии.
- 7. Генератор прямоугольного импульса на двойной формирующей линии.
- 8. Коаксиальная формирующая линия.
- 9. Взрывная эмиссия электронов, эмиссионные центры и катодные факелы. Эффект экранировки. Взрывоэмиссионный катод.
- 10. Коаксиальный диод с магнитной изоляцией (КДМИ). Ток вакуумного КДМИ с взрывоэмиссионным катодом.
- 11. Транспортировка сильноточных релятивистских электронных пучков в магнитном поле. Предельный ток транспортировки трубчатого аксиально-симметричного РЭП в вакуумной трубе.

- 12. Измерение импульсного высоковольтного напряжения: резистивный и емкостной делители.
- 13. Измерение тока сильноточных релятивистских электронных пучков: токовый шунт и пояс Роговского.
- 14. Измерение профиля плотности тока сильноточных релятивистских электронных пучков: многоколлекторные датчики тока, рентгеновская камера-обскура.
- 15. Измерение питч-фактора движения электронов сильноточных релятивистских электронных пучков в магнитном поле: диамагнитный зонд и метод малого отверстия (*pin-hole*).
- 16. Движение катодной плазмы поперек магнитного поля. Способы стабилизации поперечного профиля плотности тока сильноточных релятивистских электронных пучков.
- 17. Излучение Вавилова-Черенкова.СВЧ-излучение сильноточных релятивистских электронных пучков.
- 18. Лампа бегущей волны (ЛБВ)на основе вакуумного пространственно-периодического волновода.
- 19. Лампа обратной волны (ЛОВ)на основе вакуумного пространственно-периодического волновода.
- 20. Релтрон, его отличия от нерелятивистского пролетного клистрона.
- 21. Виркатор2-зазорный с обратной связью.
- 22. MILO: принцип действия, особенности.
- 23. Диагностика мощности наносекундных импульсов СВЧ-излучения СВЧ-детектором на "горячих носителях".
- 24. Интегральный по сечению волновода СВЧ-калориметр. Калориметрический спектрометр.
- 25. Явление и причины укорочения СВЧ-импульса в вакуумных и плазменных СВЧ-генераторах. Методы преодоления эффекта укорочения СВЧ-импульса.
- 26. Черенковское взаимодействие релятивистского электронного пучка с плазмой. Управление частотой СВЧ-колебаний изменением концентрации плазмы.
- 27. Плазменные релятивистские источники СВЧ-импульсов плазменные СВЧ-генераторы: общая конструкция, принцип создания плазмы.
- 28. Плазменный релятивистский СВЧ-генератор как усилитель с обратной связью. Пороговая длина и продольные моды излучения.
- 29. Изменение частоты излучения плазменных релятивистских СВЧ-генераторов от импульса к импульсу и в течение одного импульса.
- 30. Продольные моды излучения и пороговая длина генераторов на основе «усилительной среды» с отражениями на границах.
- 31. Эффект укорочения СВЧ-импульса и его причины. Методы преодоления эффекта укорочения СВЧ-импульса.

Дополнительные вопросы

- **1.** Сильноточные высоковольтные коммутаторы тока разрядники «на искажении поля». Взаимосвязь геометрии, динамического диапазона срабатывания и амплитуды запуска: пояснить на графике
- 2. Измерение высокого напряжения постоянного и переменного электростатическим вольтметром.
- 3. Генератор импульсного напряжения по схеме Аркадьева-Маркса: назначение, схема, соотношение параметров элементов, порядок работы.
- 4. Генератор прямоугольного импульса на одинарной формирующей линии: назначение, схема, соотношение параметров элементов, порядок работы.
- 5. Генератор прямоугольного импульса на двойной формирующей линии: назначение, схема, соотношение параметров элементов, порядок работы.
- 6. Коаксиальная формирующая линия: соотношение параметров для увеличения пробойного напряжения при фиксированном внешнем размере.

- 7. Емкостной делитель напряжения: назначение, схема, соотношение параметров элементов, порядок работы.
- 8. Пояс Роговского: назначение, схема, соотношение параметров элементов, порядок работы.
- 9. Многоколлекторные датчики тока: назначение, схема, соотношение параметров элементов, принцип работы.
- 10. Рентгеновская камера-обскура: назначение, схема, соотношение параметров элементов, принцип работы.
- 11. Измерение питч-фактора релятивистских электронов в магнитном поле методом малого отверстия (*pin-hole*).
- 12. Поперечный профиль плотности тока сильноточных релятивистских электронных пучков в магнитном поле: причины изменений и способы стабилизации.
- 13. СВЧ-детектор на "горячих носителях": назначение, схема, соотношение параметров элементов, принцип работы.
- 14. Интегральный по сечению волновода СВЧ-калориметр: назначение, схема, соотношение параметров элементов, принцип работы.
- 15. Калориметрический спектрометр: назначение, схема, соотношение параметров элементов, принцип работы.
- 16. Релятивистские сильноточные источники СВЧ-излучения на основе вакуумной лампы бегущей волны: назначение, устройство, особенности работы.
- 17. Релятивистский сильноточный источник СВЧ-излучения на основе вакуумной лампы обратной волны: назначение, устройство, особенности работы.
- 18. Релятивистский сильноточный источник СВЧ-излучения на основе линии с магнитной изоляцией (MILO): назначение, устройство, особенности работы.
- 19. Релятивистский сильноточный источник СВЧ-излучения на основе виртуального катода: назначение, устройство, особенности работы.
- 20. Релятивистский сильноточный источник СВЧ-излучения на основе плазменно-пучкового взаимодействия: назначение, устройство, особенности работы.

Программа составлена в соответствии с требованиями ОС ВО РУДН.

Руководитель направления 03.04.02

Директор института физических исследований и технологий, д.ф.-м.н., профессор

О.Т. Лоза