ca953a0120d891083f939673078ef1a989dae18a

Academy of Engineering

LUMUMBA

RUDN University

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Applications of Finite Element Method for Civil Engineering problems

course title

Recommended by the Didactic Council for the Education Field of: 08.04.01 Civil Engineering

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Civil Engineering and Built Environment

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course <u>Applications of Finite Element Method for Civil Engineering</u> <u>problems</u> is to gain knowledge, skills, skills and experience in the field of calculation of structures and structures that characterize the stages of competence formation and ensure the achievement of the planned results of the development of the educational program.

The main objectives of the discipline Applications of Finite Element Method for Civil Engineering problems are the following. FEM in the calculations of building structures is an experimental and theoretical science, where experimental data and theoretical studies are widely used. Various structures and structures, the design and construction of which is engaged in the engineer, must be de-signed for strength, rigidity, stability. This discipline teaches the student the correct selection of finite elements and their sizes for solving specific construction problems using the method of forces or displacements

2. REQUIREMENTS FOR LEARNING OUTCOMES

The course <u>Applications of Finite Element Method for Civil Engineering problems</u> implementation is aimed at the development of the following competences (competences in part):

Table 2.1. List of competences that students acquire during the course <u>«Applica</u>	<u>itions of</u>
Finite Element Method for Civil Engineering problems»	

Compet ence code	Competence descriptor	Competence formation indicators (within this course)
	based on the results of engineering and technical design for urban development activities	PC-2.1 Capable of performing engineering and technical design and developing design products for building structures, grounds and foundations; PC-2.2 Able to perform engineering and technical design and develop design products for engineering systems and engineering structures

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course <u>Applications of Finite Element Method for Civil Engineering problems</u> refers to the *elective component* of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other disciplines (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course <u>Applications of Finite Element Method for Civil Engineering problems</u>.

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the internship results.

Comp etence code	Competence descriptor	Previous courses / modules, internships	Subsequent courses / modules, internships
PC-2	Development of project	Digital technologies in	Desin Practice;
	products based on the	construction;	Technological Practice;
	results of engineering	Structural Design in Steel;	Pre-Graduation Practice
	and technical design for	Nanotechnology in Civil	
	urban development	Engineering;	
	activities	Structural Design in	
		Reinforced Concrete:	
		Special Topics;	
		Structural Dynamics;	
		Structural Design in	
		Reinforced Concrete;	
		Building materials:	

Special Topics; Structural Design in Steel: Special Topics; Modelling of	
Construction Processes	

4. COURSE WORKLOAD

The total workload of the course <u>Applications of Finite Element Method for Civil Engineering</u> <u>problems</u> is <u>3</u> credits.

Table 4.1. Academic activities types by periods of the higher education programme

Type of aca	ıdemic	Total	Semester(s)			
activiti	es	academic	3			
		hours				
Contact academ	nic hours	36	36			
including:						
Lectures (LC)		18	18			
Lab works (LW	⁽⁾	0	0			
Seminars (work	shops /	18	18			
tutorials) (S)						
Self-studies		45	45			
academic hours	1					
Evaluation and		27	27			
assessment acad	demic					
hours						
Course work / project,			1			
credits						
Course	academi	108	108			
workload	c hours					
	credits	3	3			

5. COURSE CONTENTS

Modules	Contents (topics)	Academic activities types *
Section 1. Plane Stress and Plane Strain Theory	Topic 1.1 Plane stress and plan strain approximations. Coordinate systems. Displacement of material points. State of strain. State of stress. Stress equilibrium at a point. Topic 1.2 Constitutive equations. Boundary conditions. Differential form of the governing equations. Weighted residual method. Integral form of the governing equations.	LC, S
Section 2. Introduction to the finite element method	Topic 2.1 Finite element concept. Description of finite element shape. Quadrilateral elements.Triangular elements. Interpolation of variables in finite elements.Topic 2.1 Differentiation of functions in finite elements: Differentiation of shape functions.Differentiation of behavioral variables	LC, S

Section 3. Topic 2.1 Integration of functions in finite elements: Integration over quadrilateral elements; Integration over triangular elements. Topic 2.1 Numerical integration. One-dimensional Gauss integration: Gauss integration in triangles LC, S Section 3. This section will enable the student to: a) Develop the expressions for strain energy, work done and potential energy. c) Understand and apply the concept of minimum potential energy. c) Understand the Rayleigh-Ritz method as an introduction to the finite element method LC, S Section 4. This section will enable the student to: a) Recognize the displacement field and shape functions used in the formulation of a bar finite element. LC, S a) Perform a finite clement analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problem LC, S Section 5. This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stresses and plane strain elasticity problems LC, S Section 6. This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. e) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. e) Dane elements LC, S Section 7. This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions	Modules	Contents (topics)	Academic activities types *	
Integration over quadrilateral elements; Integration over triangular elements.Topic 2.1 Numerical integration. One-dimensional Gauss integration: Gauss integration in quadrilaterals; Gauss integration in trianglesSection 3.This section will enable the student to: a) Develop the expressions for strain energy, work done and potential energy for beam and bar problems b) Understand and apply the concept of minimum potential energy. c) Understand the Rayleigh-Ritz method as an introduction to the finite element methodSection 4.This section will enable the student to: a) Recognize the displacement field and shape functions used in the formulation of a bar finite element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses and plane strain elasticity problems well as the potential energy expression for 2-D plane element.LC, SSection 5. Introduction to theory of elasticityThis section will enable the student to: and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stresses and plane strain elasticity problemsLC, SSection 6. Shape functions for 2-D plane elementsThis section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7. Finite element or this section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7. Finite element application by co		Topic 2.1 Integration of functions in finite elements:	<i></i>	
over triangular elements. Topic 2.1 Numerical integration. One-dimensional Gauss integration: Gauss integration in quadrilaterals; Gauss integration in triangles Section 3. Potential energy and approximate analysis I.C., S b Develop the expressions for strain energy, work done and potential energy for beam and bar problems I.C., S b) Understand and apply the concept of minimum potential energy. I.C., S c) Understand the Rayleigh-Ritz method as an introduction to the finite element method I.C., S formulation and application of bar clement. This section will enable the student to: a) Recognize the displacement field and shape functions used in the formulation of a bar finite element. I.C., S b) Durive the stiffness matrix as well as load vector due to various load conditions acting on a bar element. I.C., S c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problem I.C., S Section 5. This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problems I.C., S Section 6. This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. e) Perform finite element to: b) Recogn				
Topic 2.1 Numerical integration. One-dimensional Gauss integration: Gauss integration in quadrilaterals; Gauss integration in trianglesSection 3.This section will enable the student to: a) Develop the expressions for strain energy, work done and potential energy for beam and bar problemsLC, SPotential energy and approximate analysisD) Understand and apply the concept of minimum potential energy. c) Understand the Rayleigh-Ritz method as an introduction to the finite element methodLC, SSection 4.This section will enable the student to: a) Recognize the displacement field and shape functions used in the formulation of a bar finite element. b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar clement. c) Preform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemLC, SSection 5.This section will enable the student to elasticityLC, SThis section will enable the student to: a place stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize the alaxibity problemsLC, SSection 7. Finite element formulation and application by constant stress triangular (CST)This section will enable the student to: a) Recognize the alaxibity as well as the load vector due to various load conditions acting on a CSTLC, SSection 7. Finite element formulation and application by constant stress triangular (CST)This section will enable the student to: a) Derive		• • •		
Gauss integration: Gauss integration in quadrilaterals; Gauss integration in triangles Section 3. This section will enable the student to: a) Develop the expressions for strain energy, work done and potential energy for beam and bar problems LC, S b) Understand and apply the concept of minimum potential energy. c) Understand the Rayleigh-Ritz method as an introduction to the finite element method LC, S Finite element a) Recognize the displacement field and shape functions used in the formulation of a bar finite element. LC, S b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar clement. c) Perform a finite element mesh used to solve a certain bar problem Section 5. This section will enable the student to: and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problems LC, S Section 6. This section will enable the student to: a) Recognize the atural coordinate systems, the shape functions for 2-D plane elements LC, S b) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a cstress and plane strain elasticity problems LC, S Section 5. This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane element LC, S Section 7. This section will enable the student to:				
quadrilaterals; Gauss integration in triangles Section 3. This section will enable the student to: LC, S Potential energy and approximate analysis a) Develop the expressions for strain energy, work done and potential energy for beam and bar problems LC, S b) Understand the Rayleigh-Ritz method as an introduction to the finite element method LC, S Section 4. This section will enable the student to: LC, S Finite element application of bar elements a) Recognize the displacement field and shape functions used in the formulation of a bar functions used in the formulations acting on a bar element. LC, S Section 5. This section will enable the student to: LC, S Introduction to theory of elasticity This section will enable the student to understand stresses along the length of the bar. Judge on the accuracy of a specific bar element mesh used to solve a certain bar problem Section 5. This section will enable the student to: LC, S Introduction to theory of elasticity This section will enable the student to: LC, S Section 6. This section will enable the student to: LC, S Shape functions for 2-D problems a) Recognize the atural coordinate systems, the shape functions and plane elements LC, S Section 7. This s				
Section 3. This section will enable the student to: LC, S Potential energy and approximate analysis a) Develop the expressions for strain energy, work done and potential energy for beam and bar problems b) Understand and apply the concept of minimum potential energy. c) Understand the Rayleigh-Ritz method as an introduction to the finite element method Section 4. This section will enable the student to: c) Understand the Rayleigh-Ritz method as an introduction to the finite element method Section 4. This section will enable the student to: c) Understand the formulation of a bar finite element. formulation and application of bar element. element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problem Section 5. This section will enable the student to: LC, S Introduction to theory of elasticity a) Recognize the analysis for a constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problems LC, S Section 6. This section will enable the student to: LC, S Shape functions for 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions acting on a certain bar problems. LC, S Section 7. This section will enable the student		•		
Potential energy and approximate analysisa) Develop the expressions for strain energy, work done and potential energy for beam and bar problems b) Understand and apply the concept of minimum potential energy. c) Understand the Rayleigh-Ritz method as an introduction to the finite element methodSection 4.This section will enable the student to: a) Recognize the displacement field and shape functions used in the formulation of a bar finite element. b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemLC, SSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) element b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problemsLC, SSection 8.This section will enable the student to: c) Parlorem finite element. c) Parlore finite element analysis of 2-D problemsLC, S	Section 3.		LC. S	
approximate analysis done and potential energy for beam and bar problems b) Understand and apply the concept of minimum potential energy. c) Understand the Rayleigh-Ritz method as an introduction to the finite element method LC, S Section 4. This section will enable the student to: a) Recognize the displacement field and shape formulation and application of bar element. LC, S b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element. b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problem LC, S Section 5. This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problems LC, S Section 6. This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. e) Evaluate the Jacobian expression for various 2-D plane elements LC, S Section 7. This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) element. b) Know how to handle the effect of inclined boundaries. c) Perform finite eleme			,	
problems b) Understand and apply the concept of minimum potential energy. c) Understand the Rayleigh-Ritz method as an introduction to the finite element methodSection 4.This section will enable the student to: a) Recognize the displacement field and shape functions used in the formulation of a bar finite element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemLC, SSection 5.This section will enable the student to: a) Recognize the nature cipation of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemLC, SSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain clasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) element.LC, SSection 8.This section will enable the student to: c) Perform finite element analysis of 2-D problemsLC, S				
b) Understand and apply the concept of minimum potential energy. c) Understand the Rayleigh-Ritz method as an introduction to the finite element methodSection 4.This section will enable the student to: a) Recognize the displacement field and shape functions used in the formulation of a bar finite element. b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemLC, SSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D 				
potential energy. c) Understand the Rayleigh-Ritz method as an introduction to the finite clement methodSection 4.This section will enable the student to: a) Recognize the displacement field and shape formulation and application of bar element.LC, SFinite clement application of bar element.b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element.LC, Sc) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemLC, SSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. e) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a cCST element.LC, SFinite element orgular (CST)b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problemsLC, S		1		
c) Understand the Rayleigh-Ritz method as an introduction to the finite element methodSection 4.This section will enable the student to: a) Recognize the displacement field and shape functions used in the formulation of a bar finite element. b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemLC, SSection 5.This section will enable the student to: and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CSTLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CSTLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load <br< td=""><td></td><td></td><td></td></br<>				
introduction to the finite element methodSection 4.This section will enable the student to: a) Recognize the displacement field and shape functions used in the formulation of a bar finite element.LC, Sformulation and application of bar element.b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element.c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemLC, SSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CSTLC, SFinite element opplication by constant stress triangular (CST)This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CSTLC, SFinite clement opplication by constant stress triangular (CST)CSTLC, SFinite clement opplication by constant stress. c) Perform finite element, element.LC, SLC, S				
Section 4. This section will enable the student to: LC, S Finite element a) Recognize the displacement field and shape functions used in the formulation of a bar finite application of bar b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar elements b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problem Section 5. This section will enable the student to understand LC, S Introduction to theory of the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problems LC, S Section 6. S) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the student to: LC, S Section 7. This section will enable the student to: LC, S C, S Finite element a) Derive the stiffness matrix as well as the load vector due to various load conditions acting		, , ,		
Finite element formulation and application of bar elementsa) Recognize the displacement field and shape functions used in the formulation of a bar finite element.b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element.b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element.c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemLC, SSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: b) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) elementLC, SSection 8.This section will enable the student to:LC, S	Section 4			
formulation and application of bar elementsfunctions used in the formulation of a bar finite element.b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element.b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element.c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain clasticity problemsSection 6.This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions for 2-D plane elementsSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) elementLC, SSection 8.This section will enable the effect of inclined boundaries. c) Perform finite element analysis of 2-D problemsLC, S			LC, 5	
application of bar elementselement. b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions for 2-D plane elements b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) elementLC, SSection 8.This section will enable the student to: c) Perform finite element analysis of 2-D problemsLC, S				
elementsb) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemSection 5.This section will enable the student to understand the basic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) elementLC, SSection 8.This section will enable the effect of inclined boundaries. c) Perform finite element analysis of 2-D problemsLC, S				
Juledue to various load conditions acting on a bar element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.LC, SSection 8.This section will enable the student to: c) Perform finite element analysis of 2-D problemsLC, S				
element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsSection 6.This section will enable the student to: a) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CST elementSection 8.This section will enable the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems	elements			
c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CST element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problemsLC, SSection 8.This section will enable the student to: c) Perform finite element analysis of 2-D problemsLC, S		•		
bar problem in order to evaluate displacements and stresses along the length of the bar. (d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.LC, SSection 8.This section will enable the student to:LC, S				
stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) elementLC, SSection 8.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a cST element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.LC, S				
d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problemSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) elementLC, SSection 8.This section will enable the effect of inclined boundaries. c) Perform finite element analysis of 2-D problemsLC, S				
mesh used to solve a certain bar problemSection 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problemsLC, SSection 8.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a cSTLC, S		• •		
Section 5.This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsLC, SSection 6.This section will enable the student to: a) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) elementLC, SSection 8.This section will enable the effect of inclined boundaries. c) Perform finite element analysis of 2-D problemsLC, S				
Introduction to theory of elasticitythe basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsSection 6.This section will enable the student to: a) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) elementLC, SSection 8.This section will enable the effect of inclined boundaries. c) Perform finite element analysis of 2-D problemsLC, S				
elasticityand kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsSection 6.This section will enable the student to: a) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) elementLC, Sb) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.LC, S			LC, S	
well as the potential energy expression for 2-D plane stress and plane strain elasticity problemsSection 6.This section will enable the student to: a) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) elementLC, SSection 8.This section will enable the student to: c) Perform finite element analysis of 2-D problems using CST elements.LC, S	•	-		
stress and plane strain elasticity problemsSection 6.This section will enable the student to:LC, SShape functions for 2-D problemsa) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to:LC, SFinite element formulation and application by constant stress triangular (CST) elementThis section will enable the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.LC, SSection 8.This section will enable the student to:LC, S	elasticity	1		
Section 6.This section will enable the student to:LC, SShape functions for 2-D problemsa) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsLC, SSection 7.This section will enable the student to:LC, SFinite element formulation and application by constant stress triangular (CST) elementDerive the stiffness matrix as well as the load vector due to various load conditions acting on a CSTLC, SSection 8.This section will enable the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.LC, S				
Shape functions for 2-D problemsa) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CST element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.Section 8.This section will enable the student to:				
problems2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CST element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.LC, S	Section 6.	This section will enable the student to:	LC, S	
b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a application by constant stress triangular (CST) element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.LC, S	Shape functions for 2-D	a) Recognize various types of elements used to solve		
shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elementsSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CST element.LC, Sapplication by constant stress triangular (CST) element.CST element.Emergen element b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.LC, S	problems	2-D plane problems.		
c) Evaluate the Jacobian expression for various 2-D plane elementsSection 7.This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CST elementLC, Sapplication by constant stress triangular (CST) elementCST element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.LC, S		b) Recognize the natural coordinate systems, the		
plane elementsSection 7.This section will enable the student to:Finite elementa) Derive the stiffness matrix as well as the loadformulation andvector due to various load conditions acting on aapplication by constantCSTstress triangular (CST)element.b) Know how to handle the effect of inclinedboundaries.c) Perform finite element analysis of 2-D problemsusing CST elements.Section 8.This section will enable the student to:		shape functions used in various 2-D plane elements.		
Section 7.This section will enable the student to:LC, SFinite elementa) Derive the stiffness matrix as well as the loadLC, Sformulation andvector due to various load conditions acting on aCSTapplication by constantCSTelement.b) Know how to handle the effect of inclinedboundaries.c) Perform finite element analysis of 2-D problemsusing CST elements.Section 8.This section will enable the student to:LC, S		c) Evaluate the Jacobian expression for various 2-D		
Finite element formulation and application by constant stress triangular (CST) elementa) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CST element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.Section 8.This section will enable the student to:LC, S		plane elements		
Finite element formulation and application by constant stress triangular (CST) elementa) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CST element.b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.LC, S	Section 7.	This section will enable the student to:	LC, S	
formulation and application by constant stress triangular (CST) elementvector due to various load conditions acting on a CST element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.Section 8.This section will enable the student to:LC, S	Finite element	a) Derive the stiffness matrix as well as the load	,	
application by constant stress triangular (CST) elementCST element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.Section 8.This section will enable the student to:LC, S	formulation and			
stress triangular (CST) elementelement. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.Section 8.This section will enable the student to:LC, S		-		
elementb) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements.Section 8.This section will enable the student to:LC, S				
boundaries. c) Perform finite element analysis of 2-D problems using CST elements.LC, SSection 8.This section will enable the student to:LC, S				
c) Perform finite element analysis of 2-D problems using CST elements.Section 8.This section will enable the student to:LC, S				
using CST elements.Section 8.This section will enable the student to:LC, S				
Section 8.This section will enable the student to:LC, S				
	Section 8			
Reportion consideration	Practical consideration		LC, S	

Modules	Contents (topics)	Academic activities types *
in modelling	a) Recognize some basic considerations when laying out a finite element mesh including element size and grading.b) Know how to number a finite element mesh in order to optimize the computer storage and the running time	

* - to be filled in only for full -time training: LC - lectures; LW - lab work; S - seminars.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

	cl	
Type of	Classroom equipment	Specialized educational /
academic		laboratory equipment,
activities		software and materials for
		course study (if necessary)
Lectures	An auditorium for conducting lectures,	
	equipped with a set of specialized furniture;	
	a blackboard (screen) and technical means	
	for multi-media presentations.	
Seminars	A classroom for conducting seminars, group	
	and individual consultations, current and	
	midterm assessment; equipped with a set of	
	specialised furniture and technical means for	
	multimedia presentations.	
Computer Labs	A classroom for conducting classes, group	Software:
	and individual consultations, current and	SCAD Office,
	mid-term assessment, equipped with	Lira,
	personal computers (in the amount of 14	Ansys
	pcs), a board (screen) and technical means of	-
	multimedia presentations.	
Self-studies	A classroom for independent work of	
	students (can be used for seminars and	
	consultations), equipped with a set of	
	specialised furniture and computers with	
	access to the electronic information and	
	educational environment	

7. RESOURCES RECOMMENDED FOR INTERNSHIP

Main readings:

1. Advanced Finite Element Method in Structural Engineering. 2019. Publisher: Springer Berlin Heidelberg. ISBN: 978-3-642-00316-5

2. Norrie, D.H. A first course in the finite element method. 3(2)1987. 162–163 p. ISBN:0534552986.

3. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J. Cook, Malkus, Plesha, Witt - Concepts and Application of Finite Element Analysis - 4a. ed. - J. Wiley - 2022 – 733 2022. *Additional readings:*

1. Algorithms for Solving the Parametric Self-Adjoint 2D Elliptic Boundary-Value Problem Using High-Accuracy Finite Element Method [Text] = Algorithms for solving the Parametric SelfAdjoint elliptic boundary value problem in a two-dimensional domain by the high-order finite element method

// Bulletin of the Peoples ' Friendship University of Russia: Mathematics. Computer science. Physics. - 2017. - no. T. 25 (1). - C. 36-55. http://dx.doi.org/10.22363/2312-9735-2017-25-1

2. Gusev Alexander Alexandrovich. Finite Element Method of High-Order Accuracy for solving Two-Dimensional Elliptic Boundary-Value Problems of Two and Three Identical Atoms in a Line : article in English / A. A. Gusev // Bulletin of the Russian University of Friendship of Peoples: Mathematics. Computer science. Physics. - 2018. - no. t. 26 (3). - p. 226-243. http://journals.rudn.ru/miph/article/view/18988/16003

3. Solution of the Boundary-Value Problem for a Systems of ODEs of Large Dimension: Benchmark Calculations in the Framework of Kantorovich Method [Text] = Solution of boundaryvalue problems for systems of ODES of large dimension: reference calculations within the framework of the Kantorovich method. Computer science. Physics. - 2016. - No. 3. - p. 31-37. http://journals.rudn.ru/miph/article/view/13387/12817

Internet sources:

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) <u>http://lib.rudn.ru/MegaPro/Web</u>

- EL "University Library Online" <u>http://www.biblioclub.ru</u>
- EL "Yurayt" http://www.biblio-online.ru
- EL "Student Consultant" www.studentlibrary.ru

- EL "Lan" <u>http://e.lanbook.com/</u>

- EL "Trinity Bridge"

2. Databases and search engines:

- electronic foundation of legal and normative-technical documentation http://docs.cntd.ru/

- Yandex search engine https://www.yandex.ru/
- Google search engine <u>https://www.google.ru/</u>

- Scopus abstract database http://www.elsevierscience.ru/products/scopus/

The training toolkit and guidelines for a student:

1. Collection of lectures on the course <u>Applications of Finite Element Method for Civil</u> Engineering problems.

* The training toolkit and guidelines for the course are placed on the internship page in the university telecommunication training and information system under the set procedure..

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS INTERNSHIP RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course <u>Applications of Finite Element Method for Civil Engineering</u> problems results are specified in the Appendix to the internship syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor in the Department		
of Construction Technology and		
Structural Materials		M.I. Rynkovskaya
position, educational department	signature	name and surname
position, educational department	signature	name and surname
HEAD OF EDUCATIONAL DEPAR Head of the Department of	TMENT:	
Construction Technology and		
Structural Materials		A.V. Solovyeva
position, educational department	signature	name and surname
HEAD OF		
HIGHER EDUCATION PROGRAM	IME:	
Associate Professor of the		
Department of Construction		
Technology and Structural Materials		M.I. Rynkovskaya
position, educational department	signature	name and surname