Документ подписан простой электронной подписью Информация о владельце: ФИО: Ястребф Слегов Вистемировичул а потвенное	автономное образовательное учреждение высшего образования
Должность: Ректор «Российский унив Дата подписания: 29.05.2024 15:22:34	автономное образовательное учреждение высшего образования верситет дружбы народов имени Патриса Лумумбы» Зико-математических и естественных наук вного учебного подразделения (ОУП)-разработчика ОП ВО)
са953а012 0d891083f939673078ef1a969dae18a Та (наименование осно	вного учебного подразделения (ОУП)-разработчика ОП ВО)
РАБОЧ	АЯ ПРОГРАММА ДИСЦИПЛИНЫ
	СТРОЕНИЕ ВЕЩЕСТВА
	(наименование дисциплины/модуля)
Рекомендована МССН для	я направления подготовки/специальности:
	04.03.01 ХИМИЯ
(код и наим	енование направления подготовки/специальности)
Осроение лисимплины	велется в памкау пеализании основной

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

КИМИХ

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Строение вещества» входит в программу бакалавриата «Химия» по направлению 04.03.01 «Химия» и изучается в 6 семестре 3 курса. Дисциплину реализует Кафедра физической и коллоидной химии. Дисциплина состоит из 3 разделов и 13 тем и направлена на изучение современных теорий строения вещества.

Целью освоения дисциплины является осмысление и систематизация представлений в области современной теории строения вещества; раскрытие связей между всеми химическими явлениями и причинами их возникновения и на этой основе более глубокое понимание сущности химических процессов, протекающих в природе и технике, путей и способов управления последними.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Строение вещества» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
УК-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.1 Анализирует задачу, выделяя ее базовые составляющие;; УК-1.2 Определяет и ранжирует информацию, требуемую для решения поставленной задачи;;
ОПК-1	Способен анализировать и интерпретировать результаты химических экспериментов, наблюдений и измерений	ОПК-1.1 Систематизирует и анализирует результаты химических экспериментов, наблюдений, измерений, а также результаты расчетов, свойств веществ и материалов;; ОПК-1.2 Предлагает интерпретацию результатов собственных экспериментов и расчетно-теоретических работ с использованием теоретических основ традиционных и новых разделов химии;;
ОПК-4	Способен планировать работы химической направленности, обрабатывать и интерпретировать полученные результаты с использованием теоретических знаний и практических навыков решения математических и физических задач	ОПК-4.1 Использует базовые знания в области математики и физики при планировании работ химической направленности;; ОПК-4.2 Обрабатывает данные с использованием стандартных способов аппроксимации численных характеристик;; ОПК-4.3 Интерпретирует результаты химических наблюдений с использованием физических законов и представлений.;
ПК-1	Способен использовать полученные знания теоретических основ фундаментальных разделов химии при решении профессиональных задач	ПК-1.1 Понимает основные принципы, законы, методологию изучаемых химических дисциплин, теоретические основы физических и физико-химических методов исследования; ПК-1.2 Использует фундаментальные химические понятия в своей профессиональной деятельности; ПК-1.3 Интерпретирует полученные результаты, используя базовые понятия химических дисциплин;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Строение вещества» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Строение вещества».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
УК-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	Философия; Математика; Физика; Информатика; Неорганическая химия; Аналитическая химия; Органическая химия; Физическая химия;	Преддипломная практика; Коллоидная химия; Химические основы биологических процессов; Избранные главы химии; Экспериментальные методы исследования в химии; Физико-химические методы исследования неорганических веществ**; Стратегия органического синтеза**; Основы нефтехимии**; Fundamentals of Contemporary Mass Spectrometry**;
ОПК-1	Способен анализировать и интерпретировать результаты химических экспериментов, наблюдений и измерений	Неорганическая химия; Аналитическая химия; Органическая химия; Физическая химия; Основы квантовой химии; Компьютерные технологии в химии;	Коллоидная химия; Кристаллохимия и основы рентгеноструктурного анализа; Хроматография; Основы электронной и колебательной спектроскопии; Основы ЯМР; Основы массспектрометрии; Химические основы биологических процессов; Избранные главы химии; Экспериментальные методы исследования в химии; Научно -исследовательская работа; Преддипломная практика;
ОПК-4	Способен планировать работы химической направленности, обрабатывать и интерпретировать полученные результаты с использованием теоретических знаний и практических навыков решения математических и физических задач	Математика; Физика; Основы квантовой химии;	
ПК-1	Способен использовать полученные знания теоретических основ	Неорганическая химия; Аналитическая химия; Органическая химия;	Научно -исследовательская работа; Преддипломная практика;

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
Шифр			
			исследования неорганических веществ**; Стратегия органического синтеза**; Основы нефтехимии**; Fundamentals of Contemporary Mass Spectrometry**;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Строение вещества» составляет «4» зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dur was sure in masser a	DCETO on		Семестр(-ы)	
Вид учебной работы	ВСЕГО, ак.	4.	6	
Контактная работа, ак.ч.	72		72	
Лекции (ЛК)	36		36	
Лабораторные работы (ЛР)	36		36	
Практические/семинарские занятия (СЗ)	0		0	
Самостоятельная работа обучающихся, ак.ч.	72		72	
Контроль (экзамен/зачет с оценкой), ак.ч.	0		0	
Общая трудоемкость дисциплины	ак.ч.	144	144	
	зач.ед.	4	4	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
		1.1	Математический аппарат курса. Преобразование декартовых координат в полярные и сферические. Элементы теории вероятности. Элементы комбинаторики. Закон распределения случайных величин. Понятие среднего.	ЛР
		1.2	Квантово-механическое обоснование теории строения атома. Строение атома. Квантовые числа и распределение электронной плотности в атоме водорода. Водородоподобные атомы. Атомные орбитали. Волновая функция. Решение уравнения Шредингера. Радиальная и уголовая функции распределения. Многоэлектронные атомы. Электронная конфигурация атомов. Состояние атома. Полный механический момент. L – S связь (связь Рассел-Саундерса). ј - ј связь. Термы атомов. Вырождение уровней. Эффект Зеемана. Эффект Штарка.	ЛК, ЛР
Раздел 1	Раздел 1 состояние и движение атомов и молекул	1.3	Квантово-механическое обоснование теории строения молекул и химической связи. Строение молекулы. Приближение Борна — Оппенгеймера. Адиабатическое приближение. Вариационный принцип. Способ линейных комбинаций. Метод молекулярных орбиталей. Метод валентных связей. Электронное состояние молекул. Электронные термы молекул. Геометрическая конфигурация молекулы (основы метода VSEPR)	ЛК, ЛР
		1.4	Вращательное движение молекул. Решение уравнения Шредингера для жесткого ротатора. Квазитвердые молекулы, молекулы с внутренним вращением. Момент инерции. Выражение для энергии вращательного движения в зависимости от геометрической конфигурации молекулы. Теорема о произведении главных центральных моментов инерции	ЛК, ЛР
		1.5	Колебательное движение молекул. Колебательно-вращательные движения молекул. Уравнение Шредингера для одномерного гармонического осциллятора. Энергия ангармоничного осциллятора. Функция Морзе. Силовая постоянная. Энергия колебательного ротатора. Правило отбора. Формы колебаний.	ЛК, ЛР
Раздел 2	Введение в статистическую физику. Основы классической термодинамики и квантово-механическая модель вещества. Статистическое описание	2.1	Магнитные и электрические свойства молекул Динамическая и статистическая закономерность. Фазовое пространство, ансамбль систем, функция распределения в фазовом пространстве. Статистическое равновесие и флуктуации. Метод Больцмана. Термодинамическая вероятность. Закон распределения Больцмана. Распределение Максвелла — Больцмана и распределение Максвелла. Решение некоторых задач с помощью распределения Максвелла.	ЛК, ЛР
	идеальных газов	2.2	Метод Гиббса. Свойства функции распределения. Каноническое распределение Гиббса. Статистическая температура. Фазовый и	ЛК, ЛР

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
			конфигурационный интегралы. Большое каноническое распределение. Молекулярнокинетическая интерпретация термодинамических свойств макросистем. Выражение термодинамических функций через суммы по состояниям. Статистическое описание идеальных газов.	
		2.3	Квантово-механическая модель вещества в статистической физике: определение микросостояний, неразличимость частиц, единица объема фазового пространства, число состояний. Бозоны. Фермионы. Сумма по состояниям. Квантовые статистики (распределение Бозе-Энштейна, распределние Ферми-Дирака).	ЛК, ЛР
		3.1	Межмолекулярные силы и потенциал межмолекулярного взаимодействия. Реальные газы. Модель реального газа Ван-дер-Ваальса. Вириальное уравнение состояния. Закон соответственных состояний. Статистический расчет вириальных коэффициентов. Функция Майера. Разложение конфигурационного интеграла по связанным группам. Групповой интеграл. Статистическая интерпретация уравнения Ван-дер-Ваальса.	ЛК, ЛР
	Реальные газы. Жидкости. Твердые тела	3.2	Обзор теорий жидкости. Метод молекулярных функций распределения. Видовые и родовые функции распределения. Радиальная функция распределения. Термическое и калорическое уравнения состояния.	ЛК, ЛР
	. Плазма	3.3	Общие свойства твердых тел. Идеальный кристалл. Фотоны. Фононы. Нарушения геометрической структуры; точечные дефекты по Шоттки и по Френкелю, примесные дефекты. Дислокации. Геометрическая структура поверхности реального кристалла. Фотоны. Фононы. Тепловые колебания кристаллов. Теплоемкость, статистические теории теплоемкости: классическая модель, модели Эйнштейна и Дебая. Электронные состояния в твердых телах. Волновые функции Блоха. Энергетические зоны. Понятие о зонной теории металлов, полупроводников и диэлектриков.	ЛК, ЛР
Ì		3.4	Плазма - четвертое состояние вещества	ЛК

^{*} - заполняется только по OHOM форме обучения: JK – лекции; JP – лабораторные работы; C3 – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
---------------	---------------------	--

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Лаборатория	Аудитория для проведения лабораторных работ, индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и оборудованием.	Специализированное оборудование химической лаборатории: Спектрофотометр ПЭ-5400В, Фотометр КФК-3, стационарный мультимедийный Проектор Mitsubishi XD430U, стационарный экран
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. В.Д. Ягодовский Статистическая термодинамика в физической химии // М.: БИНОМ. Лаборатория знаний. -2009.-C.495.
- 2. М. Х. Карапетьянц. Строение вещества: Учебное пособие / М.Х. Карапетьянц, С.И. Дракин. 2-е изд., перераб. и доп. М.: Высшая школа, 1970. 310 с.
- В.М. Грязнов. Строение вещества: Конспект лекций для студентов факультета физико-математических и естественных наук специальности "Химия" / В.М. Грязнов, Л.Ф. Павлова. М.: Изд-во РУДН, 1974. 168 с.
 - Ч.Киттель. Введение в физику твердого тела. Пер.с англ. М. 1978.
- Г. Грей. Электроны и химическая связь. Пер. с англ. М.: Мир. 1967. Дополнительная литература:
- 1. Майер, Д. Статистическая механика / Д. Майер, Гепперт-Майер М. Изд. 2-е, перераб. Москва : Мир, 1980. 544 с. : ил. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=482841(15.04.2019)
- 2. И.В. Савельев. Курс общей физики. Том 3. Оптика, Атомная физика, Физика атомного ядра и элементарных частиц. М. 1970

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web

- ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
- ЭБС Юрайт http://www.biblio-online.ru
- ЭБС «Консультант студента» www.studentlibrary.ru
- ЭБС «Троицкий мост»
- 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Строение вещества».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС</u>!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Строение вещества» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

РАЗРАБОТЧИК:

Доцент, кафедра физической и		
коллоидной химии		Жукова Анна Ивановна
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП:		
Заведующий кафедрой, кафедра		
физической и коллоидной		Чередниченко Александр
химии		Генрихович
Должность БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:		
Заведующий кафедрой, кафедра		Хрусталев Виктор
общей и неорганической химии		Николаевич
Должность, БУП	Подпись	Фамилия И.О.