Документ подписан простой электронной подписью

Информация о владельц Federal State Autonomous Educational Institution of Higher Education

ФИО: Ястребов Олег Александрович PEOPLES' FRIENDSHIP UNIVERSITY OF RUSSIA

Должность: Ректор

Дата подписания: 15.05.2025 12:19:54

Уникальный программный ключ:

ca953a0120d891083f939673Science Faculty/Institute for Physical Research and Technologies

educational division (faculty/institute/academy) as higher education programme developer

Patrice Lumumba RUDN University

COURSE SYLLABUS

The basics of plasma physics

Recommended by the Didactic Council for the Education Field of:

03.03.02 Physics

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Physics

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course "**The basics of plasma physics**" is form physical ideas about the laws of plasma behavior in a magnetic field for the application of this knowledge when working in various fields of science and technology.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the course "**The basics of plasma physics**" is aimed at the development of the following competences:

Table 2.1. List of competences that students acquire through the course study

Competence code	Competence descriptor	Competence formation indicators (within this course)
PC-2	Ability of students are skilled at conducting scientific research in a selected field of experimental and (or) theoretical physical research using modern instrumentation (including sophisticated physical equipment) and information technology, taking into account domestic and foreign experience.	PC-2.1. Student can collect and analyze scientific and technical information on the research topic, summarizes scientific data in accordance with the objectives of the study. PC-2.2. Student has practical skills in using modern research methods in the chosen field.

3.COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course "The basics of plasma physics" refers to the core of block **B1** of the higher educational programme curriculum.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Compet ence code	Competence descriptor	Previous courses/modules*	Subsequent courses/modules*
PC-2	Ability of students are skilled at conducting scientific research in a selected field of experimental and (or) theoretical physical research using modern instrumentation (including sophisticated physical equipment) and information technology, taking into	Radiophysics Introduction to Radio Electronics Radioelectronics.	Physical research methods Physical kinetics Introduction to microwave physics. Special Laboratory Additional chapters of theoretical physics Introduction to Astrophysics Academic practice Externship

Compet ence code	Competence descriptor	Previous courses/modules*	Subsequent courses/modules*
	account domestic and foreign experience.		

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

The total workload of the course is 4 credits (144 academic hours).

Table 4.1. Types of academic activities during the periods of higher education programme mastering (full-time training).

Type of academic activities		Total	Semesters/training modules			
		academic hours	5			
Contact academic hours		72	72			
including:						
Lectures (LC)		36	36			
Lab work (LW)		-	-			
Seminars (workshops/tutorials)	(S)	36	36			
Self-studies	Self-studies		54			
Evaluation and assessment (exam/passing/failing grade)		18	18			
Course workload academic		1.4.4	144			
hours_ credits		144				
		4	4			

5. COURSE CONTENTS

Table 5.1. Course contents and academic activities types

Course module title	Course module contents (topics)	Academic activities types
Module 1: Introduction. General information	Topic 1.1. Occurrence of Plasmas in Nature. Definition of Plasma. Concept of Temperature. Debye Shielding. The Plasma Parameters. Criteria for Plasmas.	LC, S
	Topic 1.2. Applications of Plasma	LC, S
	Topic 2.1 Introduction Uniform E and B Fields. E = 0. Finite E .	LC, S
Module 2 Single-Particle Motion	Topic 2.2. Gravitational Field. Nonuniform B Field. ∇B⊥B: Grad- B Drift. Curved B: Curvature Drift. ∇B II B: Nonuniform E Field.	LC, S
	Topic 2.3 . Time-Varying E and B Fields.	LC, S
Module 3 Adiabatic Invariants	Topic 3.1. The First Adiabatic Invariant, μ. The Second Adiabatic Invariant, J. The Third Adiabatic Invariant, Φ	LC, S
Module 4 The Fluid Equation of Motion	Topic 4.1. The Convective Derivative Collisions. Comparison with Ordinary Hydrodynamics Equation of Continuity Equation of State	LC, S

Course module title	Course module contents (topics)	Academic activities types
Module 5 Waves in Plasmas	Topic 5.1. Representation of Waves Group Velocity Plasma Oscillations. Electron Plasma Waves Sound Waves. Ion Waves. Topic 5.2. Validity of the Plasma Approximation. Ordinary Wave, E1 B0 Extraordinary Wave, E1 ⊥ B0 Topic 5.3. Cutoffs and Resonances Hydromagnetic Waves. Magnetosonic Waves.	LC, S
Module 6 Diffusion and Resistivity	Topic 6.1. Diffusion and Mobility in Weakly Ionized Gases Decay of a Plasma by Diffusion. Steady State Solutions Recombination. Diffusion Across a Magnetic Field Topic 6.2. Collisions in Fully Ionized Plasmas. The Single-Fluid MHD Equations. Topic 6.3. Diffusion of Fully Ionized Plasmas	LC, S
Module 7 Equilibrium and Stability	•	
Module 8 Kinetic Theory	Topic 8.1. The Meaning of f(v) Equations of Kinetic Theory Derivation of the Fluid Equations. Plasma Oscillations and Landau Damping. The Meaning of Landau Damping. Topic 8.2. A Physical Derivation of Landau Damping. BGK and Van Kampen Kinetic Effects in a Magnetic Field Modes	LC, S
Module 9 Nonlinear Effects .		

^{* -} to be filled in only for **full** -time training: *LC* - *lectures*; *S* - *seminars*.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
Lecture	A lecture hall for lecture-type classes, equipped with a set of specialised furniture; board (screen) and technical means of multimedia presentations.	
Seminar	A classroom for conducting seminars, group and individual consultations, current and mid-term assessment; equipped with a set of specialised furniture and technical means for	List of specialised equipment, stands, visual posters, etc.

Type of academic activities	Classroom equipment multimedia presentations.	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialised furniture and computers with access to the electronic information and educational environment.	

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main readings:

- 1. Francis F. Chen. The basics of plasma physics and Controlled Fusion. Springer International Publishing AG Switzerland is part of Springer Science Business Media. (www.springer.com)
- 2. V.I. Ilgisonis. Classical problems of hot plasma physics. Course of lectures. M., Publishing house of MEI, 2015.

Additional readings:

- 1. Artsimovich L.A.; Sagdeev R. Z. Plasma physics for physicists. Moscow: Atomizdat, 1979, 313 p.
- 2. Kenro Miyamoto. Fundamentals of Plasma Physics.
- 3. B.B. Kadomtsev. Collective phenomena in plasma. Moscow: Nauka, 2008.
- 4. Kroll N., Trivelpis A. Fundamentals of Plasma Physics. Moscow: Mir, 1975.
- 5. Encyclopedia of low-temperature plasma. Introductory volume. Ch. I-IV/ Edited by V.E. Fortov. M.: Nauka, 2000.
- 6. G. Bateman: MHD instabilities, The MIT Press, Cambridge Mass. 1978
- 7. M. Kruskal and M. Schwarzschield: Proc. Roy. Soc. A223, 348 (1954)
- 8. M. N. Rosenbluth, N. A. Krall and N. Rostoker: Nucl. Fusion Suppl. Pt.1 p.143 (1962).
- 9. M. N. Rosenbluth and C. L. Longmire: Annal. Physics 1, 120 (1957)
- 10. B. Berstein, E. A. Frieman, M. D. Kruskal and R. M. Kulsrud: Proc. Roy. Soc. A244, 17 (1958)
- 11. B. B. Kadmotsev: Reviews of Plasma Physics 2, 153(ed. by M. A. Loentovich) Consultant Bureau, New York 1966
- 12. K. Miyamoto: Plasma Physics for Nuclear Fusion (revised edition) Chap.9, The MIT Press, 106 8 Magnetohydrodynamic Instabilities Cambridge, Mass. 1988
- 13. V. D. Shafranov: Sov. Phys. JETP 6, 545 (1958)
- 14. B. R. Suydam: Proc. 2nd U. N. International Conf. on Peaceful Uses of Atomic Energy, Geneva, 31, 157 (1958)
- 15. K. Matsuoka and K. Miyamoto: Jpn. J. Appl. Phys. 18, 817 (1979)
- 16. R. M. Kulsrud: Plasma Phys. and Controlled Nucl. Fusion Research, 1, 127, 1966 (Conf. Proceedings, Culham in 1965 IAEA Vienna)
- 17. J. W. Connor, R. J. Hastie and J. B. Taylor: Phys. Rev. Lett. 40, 393 (1978)
- 18. B. B. Kadomtsev and O. P. Pogutse: Reviews of Plasma Physics 5,304 (ed. by M. A. Leontovich) Consultant Bureau, New York 1970
- 19. H. P. Furth, P. H. Rutherford and H. Selberg: Phys. Fluids 16, 1054 (1973) A. Pletzer and R. L. Dewar: J. Plasma Phys. 45, 427 (1991)
- 20. S. S. Moiseev and R. Z. Sagdeev: Sov. Phys. JETP 17, 515 (1963), Sov. Phys. Tech. Phys. 9, 196 (1964)
- 21. F. F. Chen: Phys. Fluids 8, 912 and 1323 (1965)

- 22. T. H. Stix: The Theory of Plasma Waves, McGraw-Hill, New York 1962 T. H. Stix: Waves in Plasmas, American Institute of Physics, New York, 1992
- 23. B. D. Fried and S. D. Conte: The Plasma Dispersion Function, Academic Press, New York 1961
- 24. K. Miyamoto: Plasma Physics for Nuclear Fusion (Revised Edition), Chap.11 The MIT Press, Cambridge, Mass. 1989
- 25. S. Takakura: Fundamentals of Plasma Heating, Nagoya Univ. Press, 1986 (in Japanese)
- 26. I. Fidone, G. Granata and G. Ramponi: Phys. Fluids 21, 645 (1978)
- 27. A. G. Litvak, G. V. Permitin, E. V. Suvorov, and A. A. Frajman: Nucl. Fusion 17, 659 (1977)
- 28. R. J. Briggs: Electron-Stream Interaction with Plasma, The MIT Press, Cambridge, Mass. 1964

Internet sources

- 1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:
 - RUDN Electronic Library System (RUDN ELS) http://lib.rudn.ru/MegaPro/Web
 - EL "University Library Online" http://www.biblioclub.ru
 - EL "Yurayt" http://www.biblio-online.ru
 - EL "Student Consultant" www.studentlibrary.ru
 - EL "Lan" http://e.lanbook.com/
 - EL "Trinity Bridge"
 - Scopus abstract database http://www.elsevierscience.ru/products/scopus/

DEVELOPERS:		
associate professor IPRT	Karnilovich S.P	
position, department	name and surname	
HEAD OF EDUCATIONAL DE	DADTMENT.	
HEAD OF EDUCATIONAL DE	PARTMENT:	
Acting Director of IPRT (IFIT)	Kravchenko N.Yu.	
HEAD OF HIGHER EDUCATION	ON PROGRAMME:	
Professor IPRT	Loza O.T.	
position, department	name and surname	