Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов О Федеральное государственное автономное образовательное учреждение высшего Должность: Ректов разования «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 05.07.2024 01:58:32

Уникальный программный ключ:

Медицинский институт

са953a0120d891083f93967@nannienoвание основного учебного подразделения (ОУП) — разработчика программы)

Кафедра медицинской информатики и телемедицины

(наименование базового учебного подразделения (БУП) – разработчика программы)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Математическая биология, биоинформатика

(наименование дисциплины/модуля)

Научная специальность:

1.5.8. Математическая биология, биоинформатика

(код и наименование научной специальности)

Освоение дисциплины ведется в рамках реализации программы аспирантуры:

Математическая биология, биоинформатика

(наименование программы подготовки научных и научно-педагогических кадров)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Математическая биология, биоинформатика» является формирование у обучающихся способности к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях, самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий.

Задачи:

- научить обучающихся использованию современных источников информации в образовательном и научном процессе, повысить уровень их информационной культуры;
- приобщить обучающихся к преподавательской деятельности по основным образовательным программам высшего образования, участию в работе российских и международных исследовательских коллективов по решению научных и научнообразовательных задач.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины «Математическая биология, биоинформатика» аспирант должен:

знать

- современные проблемы математической биологии и биоинформатики;
- основные концепции в области математической биологии и биоинформатики;
- основные биоинформатические методы их ограничения, достоинства и недостатки;
- современные методы хранения, получения и биоинформатического анализа биологических данных;
- виды и стандарты информации, принципы безопасности передачи данных;
- современное программное и аппаратное обеспечение, а также сетевые технологии, используемые для моделирования в биологии и медицине;
- принципы работы основных биоинформатических методов в геномике, транскриптомике и протеомике;
- основные информационные ресурсы по геномике, транскриптомике и протеомике;
- принципы организации компьютерного эксперимента;
- основы организация виртуальных рабочих мест научного исследователя;

уметь:

- применять современные информационные и коммуникационные технологии для обработки медико-биологических данных;
- анализировать альтернативные варианты решения исследовательских задач и оценивать потенциальные выигрыши/проигрыши реализации этих вариантов;
- использовать фундаментальные биологические представления в сфере профессиональной деятельности;
- использовать основные принципы математической биологии и биоинформатики;
- осуществлять подбор программного и аппаратного обеспечения для решения задач собственного исследования;
- подбирать адекватные методы и данные для компьютерных экспериментов с помощью методов биоинформатики.
- применять современные методы и средства автоматизированного анализа и систематизации научных данных;

владеть:

- навыками постановки цели и задач собственного исследования и предлагать методы их решения;
- навыками сбора, обработки, анализа и систематизации информации по теме исследования; навыками выбора методов и средств решения задач исследования;
- методами подготовки экспериментальных данных (из баз данных);
- методами хранения, получения и биоинформатического анализа биологических данных;
- методами математического аппарата, биометрическими методами обработки экспериментальных медико-биологических и клинических данных;
- методами статистической обработки экспериментальных медико-биологических данных с использованием современных ИТ.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Математическая биология, биоинформатика» составляет 4 зачетные единицы (144 ак. ч.).

Вид учебной работы		Всего,	Семестр
		ак. ч.	3
Контактная работа			
в том числе:			
Лекции (ЛК)		30	30
Лабораторные работы (ЛР)			
Практические/семинарские занятия (СЗ)		30	30
Самостоятельная работа обучающихся		48	48
Контроль (зачет с оценкой/экзамен)		36	36
05	ак. ч.	144	144
Общая трудоемкость дисциплины	зач. ед.	4	4

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Наименование раздела дисциплины	Содержание раздела (темы)	
Раздел 1. Аппаратные средства	Тема 1.1. Типы компьютеров, классификация. Последовательная и параллельная обработка информации. Безопасность данных.	ЛК, СЗ, СР
	Тема 1.2. Сетевая инфраструктура и её особенности. Безопасность, уровни угроз, предотвращение проникновения и защита персональных данных.	ЛК, СЗ, СР
Раздел 2. Программное обеспечение	Тема 2.1. Системное и прикладное ПО. Специализированные ОС и приложения для работы с различными видами данных. Графический и командный интерфейс.	ЛК, СЗ, СР
	Тема 2.2. Принципы организации управления системой через графический и командный интерфейс. Примеры программ.	ЛК, СЗ, СР
Раздел 3. Сетевые технологии	Тема 3.1. Компьютерная сеть: архитектура компьютерной сети, основные компоненты, основные типы	

компьютерных сетей. Виды топологий компьютерных сетей.		
	Тема 3.2. Модель OSI. Принципы безопасности передачи данных. Протоколы компьютерной сети. Серверные и клиентские решения. Основы медицинской телематики.	ЛК, СЗ, СР
Раздел 4. Виды и стандарты информации	Тема 4.1. Классификации информации. Методы структуризации. Системы стандартов информации.	
	Тема 4.2. Стандарт HL7. Стандарт DICOM. Стандарты в геномике, протеомике, метаболомике	ЛК, СЗ, СР
	Тема 5.1. Основные характеристики СУБД. Транзакция. Модели баз данных. Основные объекты реляционных баз данных.	ЛК, СЗ, СР
Раздел 5. Хранение данных	Тема 5.2. Этапы разработки баз данных. Типы данных. Свойства полей. Ключевое поле. Поле внешнего ключа. Способы поиска информации в базах данных. Язык запросов.	ЛК, СЗ, СР
	Тема 5.3. Базы данных в биологии и медицине. Методы обращения к базам данных через глобальную сеть.	ЛК, СЗ, СР
Раздел 6.	Тема 6.1. Способы описания и моделирования информационных процессов в лечебно-диагностических задачах, в задачах классификации.	ЛК, СЗ, СР
Основы информационных биологических процессов	Тема 6.2. Способы описания и моделирования информационных процессов в изучении популяционных взаимодействий, в исследовании и прогнозировании поведения окружающей среды живых систем средствами современных информационных технологий	ЛК, СЗ, СР
	Тема 7.1. Биологические классификации и номенклатуры. Понятие протеомики, геномики, метаболомики, используемые информационные компоненты.	ЛК, СЗ, СР
Раздел 7. Биоинформатика	Тема 7.2. Геном человека основные понятия, информационные компоненты и компьютерные средства для обработки данных.	ЛК, СЗ, СР
	Teма 7.3. Языки программирования и инструменты для программирования в геномике	ЛК, СЗ, СР
	Тема 8.1. Понятие модели, виды моделей, реализация математических моделей in silico.	ЛК, СЗ, СР
	Тема 8.2. Популяционное моделирование.	ЛК, СЗ, СР
Раздел 8. Математические модели в биологии и медицине	Тема 8.3. Модели экологических процессов	ЛК, СЗ, СР
	Тема 8.4. Имитационное моделирование.	ЛК, СЗ, СР
	Тема 8.5. Модели элементов и систем животного организма.	ЛК, СЗ, СР
	Тема 8.6. Модели в диагностике состояния человека.	ЛК, СЗ, СР
	Тема 8.7. Эпидемиологические модели.	ЛК, СЗ, СР

D 0 C	Тема 9.1. Методы прогнозирования медицинских и биологических процессов на основе медицинских и биологических данных	ЛК, СЗ, СР
Раздел 9. Системный анализ и управление в медицине	Тема 9.2. Методы расчетов основных статистических характеристик результатов экспериментов.	ЛК, СЗ, СР
,,,,	 Тема 9.3. Структура информационных систем поддержки принятия управленческих решений. Тема 9.4. Элементы искусственного интеллекта в системах 	ЛК, СЗ, СР ЛК, СЗ,
	управления.	CP CP

5. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы
Лекционная / Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций	Комплект специализированной мебели; технические средства: Моноблок MSI (по) - 13 Моноблок Lenovo c560 – 3, Моноблок hp pro one – 1, Интерактивная система Smart Unifi45 – 1, Проектор Notevision – 1, Проекционный экран Cactus – 1, Компьютерная гарнитура -17, Портативная камера для документов – 1. Имеется выход в интернет. Программное обеспечение: продукты Microsoft (ОС, пакет офисных приложений, в т.ч. MS Office/Office 365, Teams).
Для самостоятельной работы обучающихся	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС Компьютерный класс для самостоятельной работы обучающихся.	Комплект специализированной мебели (11 посадочных мест); технические средства: Моноблок Lenovo Idea Centre, проектор ViewSonic p9d6253, имеется выход в интернет, Проекционный экран Cactus, гарнитуры Plantronics Audio 655 Dsp Программное обеспечение: продукты Microsoft (ОС, пакет офисных приложений, в т.ч. МЅ Office/Office 365, Teams) Комплект специализированной мебели (11 посадочных мест); технические средства: Ноутбук ASUS X542U, Моноблок Lenovo IdeaC, Проекционный экран Cactus, Проектор Toshiba, имеется выход в интернет. Программное обеспечение: продукты Microsoft (ОС, пакет офисных приложений, в т.ч. МЅ Office/Office 365, Teams)

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Мюррей Дж. Математическая биология. Том І. Введение. М.- Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2009. 776 с.
- 2. Мюррей Дж. Математическая биология. Том II. Пространственные модели и их приложения в биомедицине. М.- Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2011. 1104 с.
- 3. Славин М.Б. Практика системного моделирования в медицине: Учебное пособие. М.: Медицина, 2002. 168 с.
- 4. Богомолов А.В., Гридин Л.А., Кукушкин Ю.А., Ушаков И.Б. Диагностика состояния человека: математические подходы. М.: Медицина, 2003. 464 с.
- 5. Леск Артур. Введение в биоинформатику / А. Леск; Пер. с англ. под ред. А.А.Миронова, В.К.Швядаса. М.: БИНОМ. Лаборатория знаний, 2009. 318 с.: ил. ISBN 978-5-94774-501-6
- 6. Часовских, Н. Ю. Биоинформатика: учебник / Н. Ю. Часовских. Москва: ГЭОТАР-Медиа, 2020. 352 с. ISBN 978-5-9704-5542-5. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785970455425.html

Дополнительная литература:

- 1. М.А. Каменская Информационная биология: учебное пособие заведений М: издательский центр Академия, 2009.
- 2. Колесников Ю.Б., Сениченков Ю.Б. Моделирование систем. Динамические и гибридные системы. Учебное пособие. СПБ.: БХВ_Перербург. 2006. 224 с.
- 3. Моделирование сложных систем. Бусленко Н.П., Главная редакция физикоматематической литературы изд-ва "Наука", М., 1968, 356 стр.
- 4. Славин М.Б. Практика системного моделирования в медицине: Учебное пособие. М.: Медицина, 2002. 168 с.
- 5. Богомолов А.В., Гридин Л.А., Кукушкин Ю.А., Ушаков И.Б. Диагностика состояния человека: математические подходы. М.: Медицина, 2003. 464 с.
- 6. Математические методы для анализа последовательностей ДНК. Пер. с англ./Под.ред. М.С. Уотермена М.: Мир, 1999. 349 с.
- 7. Володченкова, Л. А. Биоинформатика : учебное пособие / Л. А. Володченкова. Омск: ОмГУ, 2018. 44 с. ISBN 978-5-7779-2214-4. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/110901
- 8. Порозов, Ю. Б. Биоинформатика: учебно-методическое пособие / Ю. Б. Порозов. Санкт-Петербург: НИУ ИТМО, 2012. 52 с. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/43567
- 9. Часовских, Н. Ю. Практикум по биоинформатике: учебное пособие / Н. Ю. Часовских. Томск: СибГМУ, [б. г.]. Часть 1 2019. 135 с. ISBN 978-5-98591-145-9. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/138707.
- 10. Understanding Bioinformatics, Marketa Zvelebil, Jeremy O.Baum, 2008. 772 p.
- 11. Joao Carlos Setubal, Joao Meidanis. Introduction to Computational Molecular Biology. Brooks/Cole Pub Co, 1997. 240 c.

- 12. Mount D.W. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory, 2001. 240 c.
- 13. Valier G. Combinatorial pattern matching algorithms in computational biology using Perl and R [1 ed.& Chapman & Hall/CRC Mathematical & Computational Biology, 2009. 356p.
- 14. Arnaud Chauvière, Luigi Preziosi, Claude Verdier. Cell Mechanics: From Single Scale-Based Models to Multiscale Modeling (Chapman & Hall CRC Mathematical & Computational Biology), 2010. 482 p.
- 15. William Jenkinson, Eric Jenkinson (auth.), Carmen Molina-París, Grant Lythe (eds.) Mathematical Models and Immune Cell Biology [1 ed.]. Springer-Verlag New York, 2011. 407 p.
- 16. Fred Brauer, Carlos Castillo-Chavez (auth.) Mathematical Models in Population Biology and Epidemiology [2 ed.]. Springer-Verlag New York, 2012. 508 p.
- 17. Marius Ghergu, Vicențiu D. Rădulescu (auth.). Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics [1 ed.]. Springer-Verlag Berlin Heidelberg, 2012. 394 p.
- 18. Westhead D.R., Parish J.H., Twyman R.M. Bioinformatics. Taylor & Francis, 2002. -253 p.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к материалам которых аспиранты университета имеют доступ на основании заключенных договоров:
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС «Образовательная платформа Юрайт» http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru, интегрирован в ЭБС РУДН
 - ЭБС «Лань» http://e.lanbook.com/
 - ЭБС «Троицкий мост», интегрирован в ЭБС РУДН
 - ЭБС BOOKUP профессиональная медицинская литератураhttp://books-up.ru/

2. Базы данных

информация об универсальных и профильных информационных базах для отбора и включения в программу размещена на сайте УНИБЦ (НБ), ссылка на раздел https://lib.rudn.ru/8

- SCOPUS наукометрическая, реферативная база данных с организованным доступом к публикациям открытого доступа http://www.elsevierscience.ru/products/scopus/ WOS наукометрическая, реферативная база данных с организованным доступом к публикациям открытого доступа webofscience.com
 - Академия Google (англ. Google Scholar) https://scholar.google.ru/
 - НЭБ, РИНЦ на платформе eLibrary.ru https://elibrary.ru/
 - Репозиторий РУДН https://repository.rudn.ru/

3. поисковые системы:

- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля размещены на странице дисциплины в ТУИС.

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля:

Курс лекций по дисциплине «Математическая биология, биоинформатика».

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система оценки освоения дисциплины представлены в приложении к настоящей рабочей программе дисциплины.

РАЗРАБОТЧИКИ:

Доцент кафедры медицинской информатики и телемедицины

Лукьянова Е.А.

РУКОВОДИТЕЛЬ БУП

Зав. кафедрой медицинской информатики и телемедицины

Столяр В.Д