Уникальный программный ключ: ca953a0120d891083f939673078ef1a989dae18a

Academy of Engineering

LUMUMBA

RUDN University

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Structural Design in Reinforced Concrete

course title

Recommended by the Didactic Council for the Education Field of: 08.04.01 Civil Engineering

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Civil Engineering and Built Environment

higher education programme profile/specialisation title

2024

1. COURSE GOAL(s)

The goal of the course <u>Structural Design in Reinforced Concrete</u> is to gain knowledge, skills, skills and experience in the design of construction structures, characterizing the stages of the formation of competencies and ensure the achievement of the planned results of the development of the educational program.

The main objectives of the course Structural design in Reinforced Concrete are:

- Collection, systematization and analysis of information source data for design and monitoring of buildings, structures and complexes from reinforced concrete.

- Feasibility study and the adoption of project decisions in overall on the object, coordination of works in parts of the project, design R / w parts and structures;

- Formation of design skills and calculation to solve specific engineering tasks using the design standards, standards, reference books, automated design tools for construction structures.

- Development of innovative technologies for the production of structures and systems, settlement techniques, including using the latest scientific achievements.

2. REQUIREMENTS FOR LEARNING OUTCOMES

The course <u>Structural Design in Reinforced Concrete</u> implementation is aimed at the development of the following competences (competences in part):

Table 2.1. List of competences that students acquire during the course <u>«Structural Design</u> <i>in Reinforced Concrete»

Compet ence code	Competence descriptor	Competence formation indicators (within this course)
	based on the results of	PC-2.1 Capable of performing engineering and technical design and developing design products for building structures, grounds and foundations

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course <u>Structural Design in Reinforced Concrete</u> refers to the *elective component* of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other disciplines (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course <u>Structural Design in Reinforced Concrete</u>.

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the internship results.

Comp etence code	Competence descriptor	Previous courses / modules, internships	Subsequent courses / modules, internships
PC-2	Development of project products based on the results of engineering and technical design for urban development activities		Life Cycle Economics of Buildings; Structural Design in Reinforced Concrete: Special Topics; Structural Dynamics; Structural Design in Steel: Special Topics; Modelling of Construction Processes; Applications of Finite Element Method for Civil Engineering problems;

	Sustainability in Civil
	Engineering;
	Optimization Methods in
	Civil Engineering;
	Structural Stability;
	Geometric Shaping and
	Analysis of Shells;
	Engineering Systems of
	Buildings;
	Desin Practice;
	Technological Practice;
	Pre-Graduation Practice

4. COURSE WORKLOAD

The total workload of the course <u>Structural Design in Reinforced Concrete</u> is <u>5</u> credits. *Table 4.1. Academic activities types by periods of the higher education programme*

Type of academic activities		Total		Semester(s)		
		academic hours	1			
Contact acaden	nic hours	36	36			
including:						
Lectures (LC)		18	18			
Lab works (LW)		0	0			
Seminars (workshops /		18	18			
tutorials) (S)						
Self-studies		117	117			
academic hours						
Evaluation and	Evaluation and		27			
assessment academic						
hours						
Course work / project,						
credits						
Course	academi	180	180			
workload	c hours					
	credits	5	5			

5. COURSE CONTENTS

Modules	Contents (topics)	Academic activities types *
Section 1.	Topic 1.1 Historical background. Concrete and	LC, S
Basic concepts of the	reinforced concrete. Advantages of reinforced	
design of reinforced	concrete as a structural material. Design Codes. SI	
concrete structures	Units and shaded areas. Admixtures. Calculation	
	accuracy	
Section 2.	Topic 2.1 Ultimate or nominal flexural moments.	LC, S
Flexural and strength analysis of beams	Cracking moment. Elastic stresses -Concrete cracked.	
according ACI code	Topic 2.2 Design methods. Advantages of Strength	
	Design. Elastic Stresses-Concrete Cracked.	
	Structural Safety.	

Modules	Contents (topics)	Academic activities types *
	Topic 2.3 Strength reduction or φ Factors. Minimum Percentage of Steel. Balanced steel	
	percentage	
Section 3. Analysis and Design of Beams (Single and	Topic 3.1 Analysis of T-beams. Design of T- beams. Design of T-beams for negative moments. L-shaped beams. Load factors. Design of	LC, S
Double Reinf; T-Beams; Continuous Beams)	rectangular beams. Miscellaneous beam considerations. Determining steel area when beam dimensions are predetermined	
Section 4. Serviceability limit states of the structures (De-flection of Beams)	Topic 4.1 Importance of deflections. Control of deflections. Calculation of deflections. Continuous-beam deflections. Types of cracks. Control of flexural cracks. ACI Code Provisions concerning cracks. Miscellaneouss cracks	LC, S
Section 5. Shear and Torsion Design	Topic 5.1 Shear Stresses in Concrete Beams. Shear Strength of Concrete. Shear Strength of Members Subjected to Axial Forces. Torsional reinforcing. Torsional moments that have to be considered in design. Torsional moment strength. Torsional stress-es. Design of torsional reinforcing. Additional ACI Requirements	LC, S
Section 6. Bond, Development Lengths, and Splices	Topic 6.1 Development lengths for welded wire fabric in tension. Development lengths for compression bars. Critical sections for development length.Effect of combined shear and moment on development lengths. Effect of shape of moment Diagram on development lengths	LC, S
Section 7. Columns. Design of short columns subject to axial load and bending. Slender columns	Topic 7.1 Types of columns. Axial load capacity of columns. Code requirements for cast-in-place Columns. Failure of tied and spiral columns. Design of axially loaded columns. Design formulas. Comments on economical column design. Axial load and bending. The Plastic centroid. Topic 7.2 Slenderness effects. Slender columns in nonsway and sway frames. ACI Code treatments of slenderness Effects. Magnification of column	LC, S
Section 8. Footings	moments in nonsway and sway frames. Topic 8.1 Design of wall footings. Plain concrete footings. Rectangular isolated footings. Combined footings. Actual soil pressures. Allowable soil pressures. Design of square isolated footings. Footings subjected to axial loads and moments. Load transfer from columns to footings. Footings supporting round or regular polygon-shaped columns. -time training: LC - lectures: LW - lab work: S - seminars.	LC, S

* - to be filled in only for full -time training: LC - lectures; LW - lab work; S - seminars.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

	assroom equipment and technology support red	
Type of	Classroom equipment	Specialized educational /
academic		laboratory equipment,
activities		software and materials for
		course study (if necessary)
T t		
Lectures	An auditorium for conducting lectures,	
	equipped with a set of specialized furniture;	
	a blackboard (screen) and technical means	
	for multi-media presentations.	
Seminars	A classroom for conducting seminars, group	Computers, Multimedia
	and individual consultations, current and	projector, Screen for
	midterm assessment; equipped with a set of	projector, Whiteboard,
	specialised furniture and technical means for	WiFi
	multimedia presentations.	
Computer Labs	Not required	
Self-studies	A classroom for independent work of	
	students (can be used for seminars and	
	consultations), equipped with a set of	
	specialised furniture and computers with	
	access to the electronic information and	
	educational environment	

Table 6.1. Classroom equipment and technology support requirements

7. RESOURCES RECOMMENDED FOR INTERNSHIP

Main readings:

1. Design of Reinforced Concrete (9th –Edition ACI 318-11 Code). 2024. Jack C. McCormac & and Russell H. Brown. Publisher: John Wiley & Sons, Inc

Additional readings:

1. Design Oriented Model for the Assessment of T-Shaped Beam-Column Joints in Reinforced Concrete Frames / Department of Structures for Engineering and Architecture, University of Naples "Federico II", 80125 Napoli, Italy. / Antonio Bossio [и др.]. // Buildings. 2016. №7.4. ISSN 2075-5309 DOI: 10.3390/buildings7040118.

2. Loulizi A. Comparison of design methods for shear in reinforced concrete beams / VT [Электронный pecypc] 2019. URL: <u>http://scholar.lib.vt.edu/theses/available/etd-09052019-040428/</u>

3. T. F. Silva, J. C. Della Bella. Design of compression reinforcement in reinforced concrete membrane / Universidade de São Paulo. // Revista IBRACON de Estruturas e Materiais. №5.6. C. 820-847. ISSN 1983-4195 DOI: 10.1590/S1983-419520120006000070.

4. Brooks, John P. Reinforced concrete :. mechanics and elementary design / by John P. Brooks,1911.220c.URL:

http://dlib.rsl.ru/rsl01004000000/rsl01004457000/rsl01004457312/rsl01004457312.pdf Internet sources:

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) <u>http://lib.rudn.ru/MegaPro/Web</u>

- EL "University Library Online" http://www.biblioclub.ru
- EL "Yurayt" http://www.biblio-online.ru
- EL "Student Consultant" <u>www.studentlibrary.ru</u>
- EL "Lan" <u>http://e.lanbook.com/</u>
- EL "Trinity Bridge"

2. Databases and search engines:

- electronic foundation of legal and normative-technical documentation http://docs.cntd.ru/

- Yandex search engine https://www.yandex.ru/

- Google search engine <u>https://www.google.ru/</u>
- Scopus abstract database http://www.elsevierscience.ru/products/scopus/

The training toolkit and guidelines for a student:

1. Collection of lectures on the course Structural Design in Reinforced Concrete.

* The training toolkit and guidelines for the course are placed on the internship page in the university telecommunication training and information system under the set procedure..

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS INTERNSHIP RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course <u>Structural Design in Reinforced Concrete</u> results are specified in the Appendix to the internship syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor in the Department of Construction Technology and	t			
Structural Materials		M.I. Rynkovskaya		
position, educational department	signature	name and surname		
position, educational department	signature	name and surname		
HEAD OF EDUCATIONAL DEPAR Head of the Department of	RTMENT:			
Construction Technology and Structural Materials		A.V. Solovyeva		
position, educational department	signature	name and surname		
HEAD OF				
HIGHER EDUCATION PROGRAM	IME:			
Associate Professor of the				
Department of Construction				
Technology and Structural Materials		M.I. Rynkovskaya		
position, educational department	signature	name and surname		