Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чтосударственное автономное образовательное учреждение высшего образования

должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 31.05.2025 18:17:27

Уникальный программный ключ:

Инженерная академия

са<u>953а0120d891083f939673078ef1a989dae18а</u> (наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МЕТОДЫ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

27.03.04 УПРАВЛЕНИЕ В ТЕХНИЧЕСКИХ СИСТЕМАХ

(код и наименование направления подготовки/специальности)

Освоение реализации дисциплины ведется рамках профессиональной образовательной программы высшего образования (ОП BO):

DATA ENGINEERING, ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ И **КИБЕРБЕЗОПАСНОСТЬ**

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Методы оптимального управления» входит в программу бакалавриата «Data Engineering, интеллектуальные системы и кибербезопасность» по направлению 27.03.04 «Управление в технических системах» и изучается в 6, 7 семестрах 3, 4 курсов. Дисциплину реализует Кафедра механики и процессов управления. Дисциплина состоит из 3 разделов и 23 тем и направлена на изучение фундаментальных основ принципа максимума Л.С. Понтрягина, динамического программирования, численных методов оптимального управления, разбор основных методов решения типовых задач и знакомство с областью их применения в профессиональной деятельности.

Целью освоения дисциплины является формирование фундаментальных знаний и навыков применения методов решения задач, необходимых для профессиональной деятельности, повышение общего уровня грамотности студентов по методам управления.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Методы оптимального управления» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр Компетенция		Индикаторы достижения компетенции	
ОПК-11	Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	(в рамках данной дисциплины) ОПК-11.1 Знает цифровые методы и технологии применяемые в профессиональной деятельности; ОПК-11.2 Умеет применять цифровые методы и технологии в профессиональной деятельности для изучения и моделирования объектов профессиональной деятельности, анализа данных, представления информации; ОПК-11.3 Уверенно владеет цифровыми методами и технологиями в профессиональной деятельности (в области управления в технических системах) для: изучения и моделирования объектов профессиональной деятельности, анализа данных, представления информации;	
ОПК-8	Способен выполнять наладку измерительных и управляющих средств и комплексов, осуществлять их регламентное обслуживание	ОПК-8.1 Знает параметры и характеристики измерительных и управляющих средств и комплексов; ОПК-8.2 Умеет осуществлять регламентное обслуживание измерительных и управляющих средств и комплексов; ОПК-8.3 Обеспечивает наладку измерительных и управляющих средств и комплексов и их регламентное обслуживание;	
ОПК-9	Способен выполнять эксперименты по заданным методикам и обрабатывать результаты с применением современных информационных технологий и технических средств	ОПК-9.3 Владеет современными информационными технологиями и техническими средствами для выполнения экспериментов и обработки результатов;	

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Методы оптимального управления» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Методы оптимального управления».

Tаблица 3.1. Перечень компонентов $O\Pi$ BO, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-8	Способен выполнять наладку измерительных и управляющих средств и комплексов, осуществлять их регламентное обслуживание	Электротехника и электроника;	Преддипломная практика;
ОПК-9	Способен выполнять эксперименты по заданным методикам и обрабатывать результаты с применением современных информационных технологий и технических средств	Информатика и программирование;	Преддипломная практика;
ОПК-11	Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	Механика космического полета; Основы технологических угроз и кибербезопасности;	Преддипломная практика;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

^{** -} элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Методы оптимального управления» составляет «9» зачетных единиц.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dur yungung nagara	ВСЕГО, ак.ч.		Семестр(-ы)		
Вид учебной работы			6	7	
Контактная работа, ак.ч.	140		72	68	
Лекции (ЛК)			36	34	
Лабораторные работы (ЛР)	70		36	34	
Практические/семинарские занятия (С3)	0		0	0	
Самостоятельная работа обучающихся, ак.ч.	121		45	76	
Контроль (экзамен/зачет с оценкой), ак.ч.	63		27	36	
Общая трудоемкость дисциплины	ак.ч.	324	144	180	
	зач.ед.	9	4	5	

Общая трудоемкость дисциплины «Методы оптимального управления» составляет «9» зачетных единиц.

Таблица 4.2. Виды учебной работы по периодам освоения образовательной программы высшего образования для заочной формы обучения.

Dura verafina i nafami	ВСЕГО, ак.ч.		Семестр(-ы)		
Вид учебной работы			6	7	8
Контактная работа, ак.ч.	44		12	16	16
Лекции (ЛК)	22		6	8	8
Лабораторные работы (ЛР)	22		6	8	8
Практические/семинарские занятия (СЗ)	0		0	0	0
Самостоятельная работа обучающихся, ак.ч.	263		128	88	47
Контроль (экзамен/зачет с оценкой), ак.ч.	17		4	4	9
Общая трудоемкость дисциплины	ак.ч.	324	144	108	72
	зач.ед.	9	4	3	2

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела дисциплины			Содержание раздела (темы)		
		1.1	Постановка задач оптимального управления. Основные понятия. Примеры задач оптимального управления.	работы* ЛК	
	Раздел 1 Теория оптимального управления. Принцип максимума Л.С. Понтрягина.	1.2	Задачи со свободным правым концом траектории. Формула для приращения функционала.	ЛК, ЛР	
		1.3	Принцип максимума Л.С. Понтрягина для задач со свободным правым концом. Формулировка и доказательство.		
		1.4	Линейные задачи со свободным правым концом 1.4 Принцип максимума как необходимое и достаточное условие.		
Раздел 1		Формулировка принципа максиму различных классов задач оптимал управления: а) двухточечные зада аксимума Л.С. оптимального быстродействия; в)		лк	
		1.6	Примеры задач оптимального управления. Задача быстродействия.	ЛК, ЛР	
		1.7	Понятие синтеза оптимального управления.	ЛК	
		1.8	Связь принципа максимума с классическим вариационным исчислением. Вывод уравнения Эйлера и условий Лежандра-Клебша из принципа максимума. Условие Якоби.	ЛК, ЛР	
	Динамическое программирование	2.1	Управляемые многошаговые процессы. Принцип оптимальности.	ЛК, ЛР	
		2.2	Метод динамического программирования для многошаговых процессов управления.	ЛК, ЛР	
		2.3	Метод динамического программирования для задач оптимального управления.	ЛК, ЛР	
Раздел 2		2.4	Дифференциальное уравнение Беллмана. Постановка задач для уравнения Беллмана. Примеры.	ЛК, ЛР	
		2.5	Связь метода динамического программирования с принципом максимума. Вывод условий трансверсальности при помощи метода динамического программирования.		
		2.6	Линейные управляемые системы с квадратичным функционалом. Построение синтеза оптимального управления.	ЛК, ЛР	
Раздел 3	Численные методы оптимального управления	3.1	Численные методы, основанные на приведении задач оптимального управления к краевым задачам при помощи принципа максимума.	ЛК	
		3.2	Использование методов решения систем алгебраических уравнений для решения краевых задач. Метод Ньютона и его модификации.	ЛК, ЛР	
		3.3	Численные методы минимизации функций многих переменных. Понятие о линейном и нелинейном программировании. Градиентный	ЛК	

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
			метод. Метод штрафных функций.	
			Численные методы, основанные на	
			варьировании управляющих функций.	
			Градиентный метод в пространстве управлений.	
		3.4	Учет ограничений на управляющие функции.	ЛК, ЛР
			Учет краевых условий и фазовых ограничений	
			методом штрафных функций. Учет краевых	
			условий методом проектирования градиента.	
			Метод последовательных приближений в	
		3.5	пространстве управляющих функций. Способы	ЛК, ЛР
		3.3	улучшения сходимости и модификации метода.	JIIX, JII
		Примеры.		
		3.6	Метод малого параметра для слабоуправляемых	ЛК
		3.0	систем.	JIK
			Численные методы, основанные на	
			варьировании в пространстве фазовых	
		3.7	координат. Метод динамического	ЛК, ЛР
			программирования. Полный и частичный	
			перебор. Метод «блуждающей трубки».	
			Понятие элементарной операции и приемы ее	
		3.8	построения. Построение элементарной операции	ЛК, ЛР
		для задач динамики полета.		
			Метод локальных вариаций. Применение метода	
			локальных вариаций к различным	
		3.9	вариационным задачам. Вариационные задачи с	ЛК
			неаддитивными функционалами. Вариационные	
		иной 1	задачи в частных производных.	GD

^{*} - заполняется только по $\underline{\mathbf{OYHOЙ}}$ форме обучения: JK – лекции; JP – лабораторные работы; C3 – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
	Аудитория для проведения занятий	
	лекционного типа, оснащенная	
Лекционная	комплектом специализированной мебели;	
	доской (экраном) и техническими	
	средствами мультимедиа презентаций.	
	Компьютерный класс для проведения	
	занятий, групповых и индивидуальных	
	консультаций, текущего контроля и	
Компьютерный	промежуточной аттестации, оснащенная	
класс	персональными компьютерами (в	
	количестве 14 шт.), доской (экраном) и	
	техническими средствами мультимедиа	
	презентаций.	
Для	Аудитория для самостоятельной работы	_
самостоятельной	обучающихся (может использоваться для	

работы	проведения семинарских занятий и	
	консультаций), оснащенная комплектом	
	специализированной мебели и	
	компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается **ОБЯЗАТЕЛЬНО!**!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1969.
- 2. Иванов В.А., Фалдин П.В. Теория оптимальных систем автоматического управления. М.: Наука, 1981. 336 с.
 - 3. Ройтенберг Я.Н. Автоматическое управление, М.: Наука, 1971. 396 с.
- 4. Афанасьев В.Н., Колмановский В.Б., Носов В.Р. Математическая теория конструирования систем управления. М.: Высшая школа, 2003. Дополнительная литература:
 - 1. Гельфанд И.М., Фомин С.В. Вариационное исчисление. М.: Физматлит, 1961.
- 2. Болтянский В.Г. Математические методы оптимального управления. М.: Наука, 1969.
- 3. Беллман Р., Дрейфус С. Прикладные задачи динамического программирования. М.: Наука, 1965.
 - 4. Моисеев Н.Н. Элементы теории оптимальных систем. М.: Наука, 1975.
- 5. Черноусько Ф.Л., Баничук Н.В. Вариационные задачи механики и управления. Численные методы. М.: Наука, 1973.
- 6. Черноусько Ф.Л., Акуленко Л.Д., Соколов Б.Н. Управление колебаниями. М.: Наука, 1980.
- 7. Черноусько Ф.Л. Оценивание фазового состояния динамических систем. М.: Физматлит, 1988.
- 8. Черноусько Ф.Л., Ананьевский И.М., Решмин С.А. Методы управления нелинейными механическими системами. М.: Физматлит, 2006.
- 9. Chernousko F.L., Ananievski I.M., Reshmin S.A. Control of Nonlinear Dynamical Systems. Methods and Applications. Berlin, Heidelberg: Springer, 2008, 396 p.
- 10. Ли Э.Б., Маркус Л. Основы теории оптимального управления / Пер. с англ. М.: Наука, 1972. 576 с.
- 11. Понтрягин Л.С. Принцип максимума. М.: Фонд математического образования и просвещения, 1998.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Методы оптимального управления».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС</u>!

Профессор Решмин Сергей Александрович Должность, БУП Подпись Фамилия И.О. РУКОВОДИТЕЛЬ БУП: Заведующий кафедрой Николаевич Должность БУП Подпись Фамилия И.О. РУКОВОДИТЕЛЬ ОП ВО:

Подпись

РАЗРАБОТЧИК:

Профессор

Должность, БУП

Разумный Юрий

Николаевич

Фамилия И.О.