Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чосударственное автономное образовательное учреждение высшего образования

должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 02.06.2025 11:40:21

Уникальный программный ключ:

Факультет искусственного интеллекта

ca953a0120d891083f939673078 (наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ОБРАБОТКА И АНАЛИЗ ИЗОБРАЖЕНИЙ И ВИДЕО С ПОМОЩЬЮ МЕТОДОВ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

02.03.02 ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, 09.03.03 ПРИКЛАДНАЯ ИНФОРМАТИКА

(код и наименование направления подготовки/специальности)

ЛИСШИПЛИНЫ ведется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ: РАЗРАБОТКА И ОБУЧЕНИЕ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Обработка и анализ изображений и видео с помощью методов искусственного интеллекта» входит в программу бакалавриата «Искусственный интеллект: разработка обучение интеллектуальных систем» ПО направлению «Фундаментальная информатика и информационные технологии» и изучается в 5 семестре 3 курса. Дисциплину реализует Кафедра прикладного искусственного интеллекта. Дисциплина состоит из 3 разделов и 36 тем и направлена на изучение формирование у студентов современных знаний и практических компетенций в области применения средств искусственного интеллекта для понимания, анализа и автоматизированной обработки Курс обеспечивает мост между классическими данных. компьютерного зрения и их решением с помощью современных алгоритмов машинного и глубинного обучения. Особое внимание уделяется анализу видео, задачам детекции объектов, трекингу, генерации и улучшению изображений и видеопотоков, что востребовано как в исследовательских, так и в промышленных задачах.

Целью освоения дисциплины является научить студентов применять методы искусственного интеллекта для автоматизации и повышения качества анализа изображений и видео: владеть инструментарием для их обработки, использования нейросетевых архитектур, извлечения признаков, интерпретации сложных визуальных сцен и построения собственных решений для задач обработки визуальных данных.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Обработка и анализ изображений и видео с помощью методов искусственного интеллекта» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции	
шифр	Компетенции	(в рамках данной дисциплины)	
		ПК-1.1 Может выбирать подходящий алгоритм машинного	
		обучения и архитектуру нейронных сетей для конкретной	
	Способен создавать и	задачи, учитывая особенности данных и требования к	
	оценивать различные модели	решению;	
	машинного обучения,	ПК-1.2 Демонстрирует навыки обработки, представления и	
	архитектуру нейронных сетей и	анализа данных для построения моделей машинного обучения;	
ПК-1	алгоритмы искусственного	ПК-1.3 Владеет методами создания и обучения моделей с	
	интеллекта с целью выбора	использованием различных алгоритмов и архитектур;	
	наиболее эффективных	ПК-1.4 Умеет оценивать соблюдение методологии разработки	
	решений для конкретных	различных моделей машинного обучения, архитектур	
	профессиональных задач	нейронных сетей и алгоритмов, анализировать качество	
		моделей и разрабатывать стратегии для улучшения качества	
		моделей;	
	Способен эффективно работать		
	с большими объемами данных,		
	включая их предварительную	ПК-2.2 Демонстрирует навыки анализа данных с	
	обработку, анализ и	использованием статистических методов и инструментов;	
ПК-2	визуализацию, с целью	ПК-2.3 Владеет методами работы с различными алгоритмами	
	извлечения полезной	машинного обучения и глубокого обучения для решения	
	информации для обучения	различных задач;	
	моделей искусственного		
	интеллекта		
	Способен разрабатывать и	ПК-3.2 Демонстрирует умение разрабатывать и реализовывать	
ПК-3	оптимизировать системы	алгоритмы обучения с подкреплением;	
	обучения с подкреплением и	ПК-3.3 Умеет интегрировать и оптимизировать системы	

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
	автоматизированного принятия решений в информационных системах, обеспечивая их эффективное функционирование и адаптацию для различных приложений	автоматизированного принятия решений в информационных системах;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Обработка и анализ изображений и видео с помощью методов искусственного интеллекта» относится к блоку по выбору блока образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Обработка и анализ изображений и видео с помощью методов искусственного интеллекта».

Таблица 3.1. Перечень компонентов ОП BO, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ПК-1	Способен создавать и оценивать различные модели машинного обучения, архитектуру нейронных сетей и алгоритмы искусственного интеллекта с целью выбора наиболее эффективных решений для конкретных профессиональных задач		Преддипломная практика; Технологическая (проектнотехнологическая) практика (производственная); Эксплуатационная практика (производственная); Нейронные сети; Прикладные задачи машинного обучения; Методы машинного обучения; Основы глубокого обучения; Оптимизация моделей машинного обучения; Практикум по обработке естественного языка (NLP); Массово-параллельные вычисления в машинном обучении (GPU); Проектирование и разработка систем компьютерного зрения; Анализ временных рядов **; Информационный поиск **; Генеративные модели **; Обработка сигналов **;
ПК-2	Способен эффективно работать с большими объемами данных, включая их предварительную обработку, анализ и	Статистические методы и первичный анализ данных; Введение в базы данных; Программирование на языке Python; Лингвистические основы анализа	Информационный поиск**; Анализ временных рядов**; Нейронные сети; Оптимизация моделей машинного обучения; Практикум по обработке

Шифр	Наименование компетенции визуализацию, с целью извлечения полезной информации для обучения моделей искусственного интеллекта	Предшествующие дисциплины/модули, практики* естественного языка; Введение в компьютерное зрение; Программирование на языке С++; Программирование на языке NodeJS**; Программирование на языке Go**; Эксплуатационная практика (учебная); Технологическая (проектнотехнологическая) практика (учебная);	Последующие дисциплины/модули, практики* естественного языка (NLP); Основы глубокого обучения; Проектирование и разработка систем компьютерного зрения; Преддипломная практика; Технологическая (проектнотехнологическая) практика (производственная); Эксплуатационная практика (производственная);
ПК-3	Способен разрабатывать и оптимизировать системы обучения с подкреплением и автоматизированного принятия решений в информационных системах, обеспечивая их эффективное функционирование и адаптацию для различных приложений		Преддипломная практика; Технологическая (проектно- технологическая) практика (производственная); Эксплуатационная практика (производственная); Рекомендательные системы **; Нейронные сети; Прикладные задачи машинного обучения;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Обработка и анализ изображений и видео с помощью методов искусственного интеллекта» составляет «4» зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Вид учебной работы	ВСЕГО, ак.ч.		Семестр(-ы)	
вид ученни расоты			5	
Контактная работа, ак.ч.	72		72	
Лекции (ЛК) 18		18		
Лабораторные работы (ЛР)		36		
Практические/семинарские занятия (С3)	/семинарские занятия (СЗ) 18		18	
Самостоятельная работа обучающихся, ак.ч.	45		45	
Контроль (экзамен/зачет с оценкой), ак.ч.	27		27	
Общая трудоемкость дисциплины	ак.ч. 144		144	
	зач.ед.	4	4	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	е дисциплины (модуля) по видам учебной работы Содержание раздела (темы)		Вид учебной работы*
	Современные методы	1.1	Введение: задачи и роль ИИ в анализе изображений и видео	ЛК
		1.2	Основы цифровых изображений, представление изображений, цветовые пространства	ЛК
		1.3	Сверточные нейронные сети (CNN): принципы, архитектуры, достаточно базовые примеры	ЛК
		1.4	Загрузка и предобработка изображений, базовая визуализация	ЛР
		1.5	Нормализация, изменение формата и цветовой модели	ЛР
Раздел 1	обработки изображений с помощью	1.6	Реализация простой CNN для классификации картинок	ЛР
	искусственного интеллекта	1.7	Использование pre-trained моделей для извлечения признаков	ЛР
		1.8	Визуализация карт активаций	ЛР
		1.9	Практика аугментации изображений (повороты, шум, масштабирование)	ЛР
		1.10	Сравнение классических и ИИ-методов в задаче классификации изображений	СЗ
		1.11	Обсуждение проблем предобработки: нормализация, шумы, балансировка классов	СЗ
		1.12	Разбор медиа-кейсов: где CNN меняют индустрию	СЗ
		2.1	Структура и форматы видеопотока, кадрирование, аннотация	ЛК
		2.2	Современные методы детекции объектов (YOLO, SSD, Faster R-CNN): идеи, специфика работы с видео	ЛК
		2.3	Трекинг объектов: основные алгоритмы, задачи трекинга в реальных приложениях	ЛК
		2.4	Захват видео, разбивка на кадры, чтение видеофайлов	ЛР
		2.5	Предобработка видеоданных для анализа	ЛР
Воздал 2	Анализ и обработка видео. Детекция и трекинг объектов	2.6	Детекция объектов на видео с помощью готовых моделей	ЛР
газдел 2		2.7	Реализация трекинга объекта на видео (например, фильтр Калмана, КСF, MedianFlow)	ЛР
		2.8	Построение простого видеонаблюдательного приложения (считает объекты)	ЛР
		2.9	Анализ трекинга: визуализация траекторий и фильтрация ложных срабатываний	ЛР
		2.10	Групповой разбор бизнес-кейсов видеонаблюдения	СЗ
		2.11	Аналитика на видео: что считать, как анализировать, как хранить метаданные	СЗ
		2.12	Вызовы реальных видеоданных: частота кадров, помехи, обработка ошибок	СЗ
		3.1	Генеративные модели (GAN, VAE), их место в обработке изображений	ЛК
Раздел 3	Генерация, улучшение и синтез визуального контента с помощью ИИ	3.2	Суперразрешение и улучшение качества изображений: подходы и современные архитектуры	ЛК
		3.3	Современные примеры применения: deepfake, стилизация, автоулучшение видео	ЛК
		3.4	Генерация искусственных изображений с	ЛР

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
		помощью базового GAN		
		3.5	Применение моделей суперразрешения (SRGAN или простые библиотеки) для повышения качества фото	ЛР
		3.6 Стилизация изображений и видео с помощью transfer learning 3.7 Восстановление испорченных изображений нейросетями 3.8 Применение сегментации для выделения объектов на изображениях 3.9 Мини-проект: сборка пайплайна по улучшению качества короткого видеоролика 3.10 Этические аспекты deepfake, фейковых визуализаций и защиты данных 7рупповой анализ опыта известных проектов (разбор успешных и провальных)		ЛР
				СЗ
				СЗ
		3.12	Итоговая дискуссия — где граница возможностей и какие перспективы дальнейшего развития	СЗ

^{* -} заполняется только по $\underline{\mathbf{OYHOЙ}}$ форме обучения: $\mathit{ЛK}$ – лекции; $\mathit{ЛP}$ – лабораторные работы; $\mathit{C3}$ – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
	Аудитория для проведения занятий	
_	лекционного типа, оснащенная	
Лекционная	комплектом специализированной мебели;	
	доской (экраном) и техническими	
	средствами мультимедиа презентаций.	
	Компьютерный класс для проведения	
	занятий, групповых и индивидуальных	
	консультаций, текущего контроля и	
Компьютерный	промежуточной аттестации, оснащенная	
класс	персональными компьютерами (в	
	количестве 25 шт.), доской (экраном) и	
	техническими средствами мультимедиа презентаций.	
	Аудитория для проведения занятий	
	семинарского типа, групповых и	
	индивидуальных консультаций, текущего	
Семинарская	контроля и промежуточной аттестации,	
Семинарская	оснащенная комплектом	
	специализированной мебели и	
	техническими средствами мультимедиа	
	презентаций.	

	Аудитория для самостоятельной работы	
Для	обучающихся (может использоваться для	
самостоятельной	проведения семинарских занятий и	
работы	консультаций), оснащенная комплектом	
раооты	специализированной мебели и	
	компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Селянкин, В. В. Компьютерное зрение. Анализ и обработка изображений / В. В. Селянкин. 3-е изд., стер. Санкт-Петербург: Лань, 2023. 152 с. ISBN 978-5-507-45583-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/276455 Дополнительная литература:
- 1. Акинин М. В., Никифоров М. Б., Таганов А. И. Нейросетевые системы искусственного интеллекта в задачах обработки изображений. М.: Горячая линия Телеком, 2017. -152 с.: ил. ISBN 978-5-9912-0537-5

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН https://mega.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС «Юрайт» http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Знаниум» https://znanium.ru/
 - 2. Базы данных и поисковые системы
 - Sage https://journals.sagepub.com/
 - Springer Nature Link https://link.springer.com/
 - Wiley Journal Database https://onlinelibrary.wiley.com/
 - Наукометрическая база данных Lens.org https://www.lens.org

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Обработка и анализ изображений и видео с помощью методов искусственного интеллекта».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС!</u>

РАЗРАБОТЧИК:

Заведующий кафедрой		
прикладного искусственного		Подолько Павел
интеллекта		Михайлович
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП:		
Заведующий кафедрой		
прикладного искусственного		Подолько Павел
интеллекта		Михайлович
Должность БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:		
Заведующий кафедрой		
прикладного искусственного		Подолько Павел
интеллекта		Михайлович
Должность, БУП	Подпись	Фамилия И.О.