(Educational Division)

COURSE SYLLABUS

Inorganic and Analytical Chemistry

(Course title)

Recommended by the Didactic Council for the Education Field of (Linguistics) for the direction of training (specialty):

35.05.01 Veterenary

(code and direction of training/specialty)

The development of the course is carried out within the framework of the implementation of the main professional educational program of higher education (EP of HE):

Veterenary

(program (profile / specialisation) EP of HE)

35.05.01 Veterenary

1. Course Goals

The purpose of studying the course "Inorganic and Analytical Chemistry" is to form system knowledge about the structure of a substance, the main laws governing chemical reactions, patterns in the chemical behavior of the main classes of inorganic compounds in conjunction with their structure for using this knowledge as a basis for studying processes occurring in a living organism, and basic materials used in dental practice.

2. Requirements to Learning Outcomes the Course

The course "Inorganic and Analytical Chemistry" is expected to contribute to the following generic (GC) and generic professional competences (GPC) development as required by the Russian Higher Educational Standard for Training in Chemistry: <u>GC-6, GPC-3</u>

Competence code	Competence	Indicators of Competence Formation / Development
GC-6	<u> </u>	GC -6.1. Evaluates own resources and their
		limits (personal, situational, temporary), uses
	ways to improve it on the basis of self-	them optimally for the successful completion
	assessment and lifelong education.	of the task.
GPC-3	1 0	GPC-3.2. Understands the effect of the main
	doping in sports and the fight against it.	types of doping on the physical qualities of a
		person, their side effects.

Table 2.1. List of competencies that form during studying the course (learning outcomes)

3. Course in Higher Education

autoomoo

The course "Inorganic and Analytical Chemistry" refers to the basic part of block 1 educational program of higher education.

As part of the EP of HE, students also study other courses and / or practices that contribute to the achievement of the planned results of studying the course " Inorganic and Analytical Chemistry".

Compe	Competence	Previous	Subsequent
tence		Disciplines	Disciplines
code		(Modules)	(Modules)
GC-8	The ability to create and maintain safe living conditions in everyday life and in professional activities to preserve the natural environment, ensure the sustainable development of society, including in the event of a threat and the occurrence of emergencies and military conflicts	_	Biological Chemistry - Oral Biochemistry PharmacologyOrganic chemistry Physical and colloidal chemistry Life safety Veterinary microbiology and mycology Virology and biotechnology Animal hygiene

Table 3.1. List of Higher Education Program components that contribute to expected learning

Compe tence code	Competence	Previous Disciplines (Modules)	Subsequent Disciplines (Modules)
			Veterinary pharmacology Veterinary sanitationOrganic chemistry Physical and colloidal chemistry Life safety Veterinary microbiology and mycology Virology and biotechnology Animal hygiene Veterinary pharmacology Veterinary sanitation
GPC-4	The ability to use in professional activities methods of solving problems using modern equipment in the development of new technologies and to use modern professional methodology for conducting experimental studies and interpreting their results. The ability to use in professional activities methods of solving problems using modern equipment in the development of new technologies and to use modern professional methodology for conducting experimental studies and interpreting their results.	-	Veterinary santationOrganic chemistryPhysical and colloidalchemistryLife safetyVeterinarymicrobiology andmycologyVirology andbiotechnologyAnimal hygieneVeterinarypharmacologyVeterinary sanitation
PC-7	The ability to select the necessary drugs of a chemical and biological nature for the treatment of animals, taking into account their cumulative pharmacological effect on the body The ability to select the necessary drugs of a chemical and biological nature for the treatment of animals, taking into account their cumulative pharmacological effect on the body	-	Veterinary santationOrganic chemistryPhysical and colloidalchemistryLife safetyVeterinarymicrobiology andmycologyVirology andbiotechnologyAnimal hygieneVeterinarypharmacologyVeterinary sanitationOrganic chemistryPhysical and colloidalchemistryLife safety

Compe tence code	Competence	Previous Disciplines (Modules)	Subsequent Disciplines (Modules)
			Veterinary
			microbiology and
			mycology
			Virology and
			biotechnology
			Animal hygiene
			Veterinary
			pharmacology
			Veterinary sanitation

4. Course Workload and Training Activities Course workload "Chemistry" is 3 credits.

Table 4.1. Types of academic activities during the period of the HE program(me) mastering

Types of academic activities		Total	Semester(s)			
		academic hours	1	2	3	4
Contact academic hours		51	51			
i	including:					
Lectures (L)		17	17			
Lab works (LW)		34	34			
Seminars (workshops/tutorials) (S)	-	-				
Self-study (ies), academic hours		35	35			
Evaluation and assessment (exam or pass/fail		22	22			
grading), academic hours						
	academic	108	108			
Course workload	hours	100				
	credits	3	3			

5. Course Modules and Contents

Table 5.1. Contents of course by type of academic activities

Modules	Contents of Modules	Type of academic activities
Classes of inorganic compounds	Main classes of inorganic compounds. Double oxides. Ceramic materials.	LW
Basic concepts of thermodynamics. First and second laws of thermodynamics.	Subject and methods of chemical thermodynamics. The relationship between the processes of metabolism and energy in the body. Chemical bioenergetics. Basic concepts of thermodynamics. Intensive and extensive parameters. State function. Internal energy. Work and heat are two forms of energy transfer. Types of thermodynamic systems (isolated, open, closed). Types of thermodynamic processes (isothermal, isobaric). Standard state. First law of thermodynamics. Enthalpy. Standard enthalpies of formation and combustion of a substance. Standard enthalpy of reactions. Hess' law.	L, LW

	Application of the first law of thermodynamic to biosystems. The second law of thermodynamics. Reversible and irreversible processes. Entropy. Gibbs energy. Forecasting the direction of spontaneous processes in isolated and closed systems; the role of enthalpy and entropy factors. Thermodynamic equilibrium conditions. Standard Gibbs energies of formation and biological oxidation of matter. Standard Gibbs energy of the reaction. Examples of exergonic and endergonic processes occurring in the body. The principle of energy conjugation.	
Basic concepts of chemical kinetics. Classification of reactions in kinetics.	Chemical balance. Reversible and irreversible reactions. Thermodynamic equilibrium conditions in isolated and closed systems. Chemical equilibrium constant. The equation of the isotherm and isobar of a chemical reaction. Subject and basic concepts of chemical kinetics. Chemical kinetics as a basis for studying the rates and mechanisms of biochemical processes. Average speed and true speed. Classification of reactions in kinetics: homogeneous, heterogeneous, simple and complex reactions. Molecularity of the elementary act of the reaction. Kinetic equations. Reaction order. half-life. Dependence of reaction rate on concentration. Kinetic equations of zero, first, second order reactions. Experimental methods for determining the rate and rate constant of reactions. The dependence of the reaction rate on temperature. The temperature coefficient of the reaction rate and its features for biochemical processes. The concept of the theory of active collisions. Activation energy. Arrhenius equation; the role of the steric factor. The concept of the theory of the transition state. Catalysis. Homogeneous and heterogeneous catalysis. Energy profile of the catalytic reaction. Features of the catalytic activity of enzymes. Michaelis-Menten equation and its analysis.	L, LW
Concentrationsandcolligativepropertiespropertiesofsolutions.of	Classification of solutions. Methods for expressing the concentrations of solutions. Volumetric analysis. Titration. Raoult's law, cryoscopy, ebullioscopy, Van't Hoff's law, isotonic, hyper-, hypotonic solutions.	LW
Ionic equilibrium in electrolyte solutions.	Proton theory of Lewis acids and bases. Acidity, basicity constants, the relationship between the acidity and basicity constant in a conjugated protolytic pair, the general constant of the combined protolytic equilibrium. Protolytic processes occurring in the oral cavity, their effect on hard dental tissues. Ionic product of water, pH of solutions; hydrolysis of salts, degree and constant of hydrolysis. Hydrolysis of food products in the oral cavity and its effect on hard dental tissues. buffer solutions. hydrolysis of starch. Ampholytes. Acidity of gastric juice. The role of pH in body fluids. Solubility constant. General constant of combined heterogeneous equilibrium. Conditions for the formation and dissolution of precipitates. The phenomenon of isomorphism.	L, LW

Reactions of	Werner's coordination theory. The nature of the chemical hand	LW
complexing	Werner's coordination theory. The nature of the chemical bond in complex compounds. Classification of complex compounds.	
complexing	Nomenclature of complex compounds. Polydentate ligands.	
	Chelation. The structure of hemoglobin, chlorophyll. Stability	
	of complex compounds in solutions. Complex instability	
	constant. Toxic effect of salts of heavy metals. Antidotes.	
Dianarga gyatama	Classification of dispersed systems. Classification of dispersed	L, LW
Disperse systems	systems according to the degree of dispersion; according to the	L, L W
	state of aggregation; according to the strength of intermolecular	
	interaction between the dispersed phase and the dispersion	
	medium. The nature of the colloidal state. Obtaining and	
	properties of dispersed systems. Obtaining suspensions,	
	emulsions, colloidal solutions. Dialysis, electrodialysis,	
	ultrafiltration. Molecular-kinetic properties of colloidal	
	dispersed systems: Brownian motion, diffusion, osmotic	
	pressure, sedimentation equilibrium. Optical properties: light	
	scattering (Rayleigh's Law). Electrokinetic properties:	
	electrophoresis and electroosmosis; flow potential and	
	sedimentation potential. The structure of the electrical double	
	layer. Electrokinetic potential and its dependence on various	
	factors. Stability of dispersed systems. Sedimentation,	
	aggregation and condensation stability of lyosols. Factors	
	affecting the stability of lyosols. Coagulation. Coagulation	
	threshold and its definition, Schulze-Hardy rule, habituation	
	phenomenon. mutual coagulation. The concept of modern	
	theories of coagulation. Colloidal protection and peptization.	
	Colloidal surfactants; biologically important colloidal	
	surfactants (soaps, detergents, bile acids). Micellization in	
	surfactant solutions. Determination of the critical micelle	
	concentration. Liposomes.	
Electrochemical	The theory of redox processes. The concept of redox systems.	L, LW
processes and redox		
reactions.	cavity during metal prosthetics. The appearance of a double	
	electric layer at the metal-electrolyte interface. Electrode	
	potential, methods of its measurement. Electrochemical series	
	of voltages of metals. The principle of operation of galvanic	
	cells. Dental materials. Their classification, brief description,	
	application in dentistry. Basic (structural) dental materials:	
	metals and alloys, polymers, ceramics. Corrosion of metals, its	
	types. Electrochemical corrosion: conditions of occurrence;	
	factors contributing to its flow in the oral cavity during metal	
	prosthetics.	

6. Classroom Equipment and Technology Support Requirements

Classroom for Academic Activity Type	Classroom Equipment	Specialized Educational / Laboratory Equipment, Software and Materials for Studying the Course
Laboratories of the Department of General Chemistry of the Faculty of Physics, Mathematics and Natural Sciences	Classroom for lab works, equipped with a set of specialized furniture	A set of specialized furniture, reagent kits, stands, chemical glassware (test tubes, cups, flasks, pipettes, burettes), D.I. Mendeleev's table, activity series of metals, solubility table, marker board, markers, sponge, fume hood, centrifuge, photocolorimeters, potentiometers, analytical balances, multimedia systems.
For self-studies	Classroom for seminar-type classes, self-studies, group and individual consultations, current control and intermediate certification, equipped with a set of specialized furniture and multimedia equipment	A set of devices includes portable multimedia projector, laptop, projection screen, stable wireless

Table 6.1. Classroom Infrastructure and Technology Support Requirements

7. Recommended Sources for Course Studies

a) Main reading (sources)

- Harper's Illustrated Biochemistry: textbook / Rodwell V. W., Bender D. A., Botham K. M., Kennelly P. J., Weil P. A. - United States: McGraw Hill Education, 2015 - 817 p. - 30-th Edition.
- □ Brown T, LeMay H., Bursten B. et al. Chemistry: The Central Science. 14th Edition. Pearson, 2017 1248 p.
- □ Sharma R.K. Textbook of Coordination Chemistry.-New Delhi: Discovery Publishing House, 2007 285p.
- □ Charles E Carraher Jr. Introduction to Polimer Chemistry. 4th Edition CRC Press, 2017 588 p.
- □ Kovalchukova O.V Lectures on general and bioorganic chemistry. Part 1. General chemistry. M .: Publishing house RUDN, 2011.
- Kovalchukova O.V, Avramenko O.V Lectures on general and bioorganic chemistry. Part 2.
 Bioorganic chemistry. M .: Publishing house of RUDN, 2010.
- □ Langdon J. Physical Chemistry: Theories, Models and Applications. NY RESEARCH PRESS, 2018 246 p.

b) Optional sources:

- Geoffrey A. Lawrance. Introduction to Coordination. A Wiley Series of Advanced Texbooks.- NSW, Australia, 2010 304 p.
- David R. Klein. Organic Chemistry. 1sh Edition. Wiley, 2011 1392 p.
- Kovalchukova O.V., Avramenko O.V., Vu Thi Nkog An The theoretical foundations of the

course "Chemistry". M .: Publishing house of RUDN,2018.

• Nivaldo Tro. Chemistry: A Molecular Approach. 5th Edition. – Pearson, 2019 – 1320 p.

c) List of educational and electronic materials:

• <u>https://esystem.rudn.ru/</u>

Internet-(based) sources:

- 1. Electronic libraries with access for RUDN students:
- Electronic libraries of RUDN http://lib.rudn.ru/MegaPro/Web
- ELS «University Library Online» http://www.biblioclub.ru
- ELS Юрайт <u>http://www.biblio-online.ru</u>
- ELS «Student Advisor» www.studentlibrary.ru
- ЭБС «Лань» <u>http://e.lanbook.com/</u>

8. Assessment and Evaluation Toolkit

Mid-term assessment and evaluation toolkit and assessment and marking/grading criteria based on the results of studying the course "Chemistry" are presented in the Appendix to this Course syllabus.

Authors:

Senior Lecturer of the General			
and Inorgnic Chemistry		Nevskaya A.A.	
Department			
Assignment	Signature		
The Department of the General and Inorgnic Chemistry			
8		Khrustalyov V.N.	
Department	Signature		

Signature

HEAD OF HIGHER EDUCATION PROGRAMME:

Director of the Department of Veterinary Medicine

Vatnikov Yu.A.