Уникальный программный ключ: ca953a0120d891083f939673078ef1a989dae18a

Academy of Engineering

LUMUMBA

RUDN University

educational division (faculty/institute/academy) as higher education program developer

COURSE SYLLABUS

Structural Dynamics

course title

Recommended by the Didactic Council for the Education Field of:

08.04.01 Civil Engineering

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Civil Engineering and Built Environment

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course <u>Structural Dynamics</u> is to prepare the future specialist to solve problems and teach him to determine the dynamic characteristics of construction and engineering structures.

Loads that change rapidly in time cause the cross-sections of the structure to move with accelerations, resulting in inertial forces that need to be taken into account in the calculations, in addition, in some cases, stresses that vary in time can occur at certain points of the structure, which leads to material fatigue, so the purpose of the discipline is to teach calculations for the effect of dynamic loads caused by wind gusts, machines, engines and other mechanisms that cause vibrations of structures.

The dynamic calculation is aimed at providing the necessary structural strength and preventing large deformations. Stresses that are variable in time occur in structural elements under the influence of loads that are variable in magnitude or direction, as well as loads that move relative to the designed element. Numerous experiments confirm that under the action of alternating stresses, the destruction of materials occurs at stresses significantly lower than the dangerous stresses under static loading. Solving this problem is also the goal of the discipline.

The objective of the course is to teach students to determine the dynamic effects on structures and take them into account when calculating.

2. REQUIREMENTS FOR LEARNING OUTCOMES

The course <u>Structural Dynamics</u> implementation is aimed at the development of the following competences (competences in part):

	Table 2.1. List of competences that students acquire during the course <u>«structural</u>					
1	<u>Dynamics</u> »					
	Compet ence code	Competence descriptor	Competence formation indicators (within this course)			
I	PC-2	Development of project products	PC-2.1 Capable of performing engineering and			
		based on the results of	technical design and developing design products for			
		engineering and technical design	building structures, grounds and foundations;			
		for urban development activities	PC-2.2 Able to perform engineering and technical			

Table 2.1. List of competences that students acquire during the course <u>«Structural</u>

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course <u>Structural Dynamics</u> refers to the *elective component* of (B1) block of the higher educational programme curriculum.

design and develop design products for engineering

systems and engineering structures

Within the higher education programme students also master other disciplines (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course <u>Structural Dynamics</u>.

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the internship results.

Comp etence code	Competence descriptor	Previous courses / modules, internships	Subsequent courses / modules, internships
PC-2	Development of project	Digital technologies in	Life Cycle Economics of
	products based on the	construction;	Buildings;
	results of engineering	Structural Design in Steel;	Applications of Finite
	and technical design for	Nanotechnology in Civil	Element Method for Civil
	urban development	Engineering;	Engineering problems;
	activities	Structural Design in	Sustainability in Civil
		Reinforced Concrete;	Engineering;

Building materials:	Optimization Methods in
Special Topics	Civil Engineering;
	Structural Stability;
	Geometric Shaping and
	Analysis of Shells;
	Engineering Systems of
	Buildings;
	Desin Practice;
	Technological Practice;
	Pre-Graduation Practice

4. COURSE WORKLOAD

The total workload of the course <u>Structural Dynamics</u> is <u>5</u> credits. *Table 4.1. Academic activities types by periods of the higher education programme*

Type of academic activities		Total	Semester(s)			
		academic	2			
		hours				
Contact acaden	<i>iic hours</i>	72	72			
including:						
Lectures (LC)		36	36			
Lab works (LW	()	0	0			
Seminars (workshops /		36	36			
tutorials) (S)	· · ·					
Self-studies		81	81			
academic hours	academic hours					
Evaluation and		27	27			
assessment academic						
hours						
Course work / project,			2			
credits						
Course	academi	180	180			
workload	c hours					
	credits	5	5			

5. COURSE CONTENTS

Modules	Contents (topics)	Academic activities types *
Section 1.	General concepts. Forces of inertia. The Dalembert	LC, S
General information	principle. The main types of dynamic load.	
about the dynamics of	Dynamic tasks that are reduced to static calculation	
deformable systems	tasks. Calculation for inertial loads	
Section 2.	Dynamic coefficient	LC, S
Hit		
Section 3.	Elastic natural oscillations of systems with one	LC, S
Oscillations of systems	degree of freedom. Forced oscillations of systems	
with n degrees of	with one degree of freedom. Resonance. Vibration	
freedom	damping. Elastic free oscillations of systems with	
	several degrees of freedom. Determination of the	
	number of degrees of freedom for flat rod systems.	
	A system with two degrees of freedom	

Modules	Contents (topics)	Academic activities types *
Section 4.	Free vibrations of beams as systems with	LC, S
Free oscillations of rod	distributed mass. Longitudinal vibrations of a rod	
systems as systems with	with a distributed mass. The solution is in the form	
distributed mass	of a traveling wave. A standing wave type solution.	
	The method of displacements in problems of	
	harmonic oscillations of rod systems. Free	
	oscillations of rod systems with distributed mass.	
	Free vibrations of the U-shaped frame.	
Section 5.	Variable stresses. Stress cycle. Fatigue. The fatigue	LC, S
Calculation of fatigue	curve. The limit of endurance. The main factors	
	affecting the value of the endurance limit.	

* - to be filled in only for full -time training: LC - lectures; LW - lab work; S - seminars.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Type of academic	Classroom equipment	Specialized educational / laboratory equipment,
activities		software and materials for
uotivitios		course study (if necessary)
Lectures	An auditorium for conducting lectures,	
	equipped with a set of specialized furniture;	
	a blackboard (screen) and technical means	
	for multi-media presentations.	
Seminars	A classroom for conducting seminars, group	
	and individual consultations, current and	
	midterm assessment; equipped with a set of	
	specialised furniture and technical means for	
	multimedia presentations.	
Computer Labs	Not required.	
Self-studies	A classroom for independent work of	
	students (can be used for seminars and	
	consultations), equipped with a set of	
	specialised furniture and computers with	
	access to the electronic information and	
	educational environment	

7. RESOURCES RECOMMENDED FOR INTERNSHIP

Main readings:

1. Trahair N.S., Bradford M.A., Nethercot D.A., Gardner L. (2023). The Behaviour and Design of Steel Structure to EC3. Fourth edition. Published by Taylor & Francis, New York, 490. https://civteam.files.wordpress.com/2023/03/the-behaviour-and-design-of-steel-structuresto-ec3-2023.pdf

Additional readings:

1. Guddat J., Jongen H.TH. Structural stability in nonlinear optimization : http://dx.doi.org/10.1080/02331938708843275

2. Second order structural theory for the stability analysis of columns/

Российский университет дружбы народов. / Vera V Galishnikova [и др.]. // Structural Mechanics of Engineering Constructions and Buildings. 2018. №14.3. С. 192-197. ISSN

1815-5235 DOI: 10.22363/1815-5235-2018-14-3-192-197

https://cyberleninka.ru/article/n/second-order-structural-theory-for-the-stability-analysis-of columns

3. Chen W.F., Sohal I. Plastic Design and Second-Order Analysis of Steel Frames./ Springer-Verlag New York, 1995. – 509 p.

Internet sources:

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) <u>http://lib.rudn.ru/MegaPro/Web</u>

- EL "University Library Online" <u>http://www.biblioclub.ru</u>
- EL "Yurayt" <u>http://www.biblio-online.ru</u>
- EL "Student Consultant" www.studentlibrary.ru
- EL "Lan" http://e.lanbook.com/
- EL "Trinity Bridge"

2. Databases and search engines:

- electronic foundation of legal and normative-technical documentation http://docs.cntd.ru/
- Yandex search engine https:// www .yandex.ru/
- Google search engine https://www.google.ru/

- Scopus abstract database http://www.elsevierscience.ru/products/scopus/

The training toolkit and guidelines for a student:

1. Collection of lectures on the course Structural Dynamics.

* The training toolkit and guidelines for the course are placed on the internship page in the university telecommunication training and information system under the set procedure..

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS INTERNSHIP RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course <u>Structural Dynamics</u> results are specified in the Appendix to the internship syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor in the Department of Construction Technology and	t			
Structural Materials		M.I. Rynkovskaya		
position, educational department	signature	name and surname		
position, educational department	signature	name and surname		
HEAD OF EDUCATIONAL DEPAR Head of the Department of	RTMENT:			
Construction Technology and Structural Materials		A.V. Solovyeva		
position, educational department	signature	name and surname		
HEAD OF				
HIGHER EDUCATION PROGRAM	IME:			
Associate Professor of the				
Department of Construction				
Technology and Structural Materials		M.I. Rynkovskaya		
position, educational department	signature	name and surname		