Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чтосударственное автономное образовательное учреждение высшего образования Должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 29.05.2024 11:44:39

Уникальный программный ключ:

Инженерная академия

са953a0120d891083f7)39673078ef1a989dae18a (наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

АДДИТИВНЫЕ ТЕХНОЛОГИИ

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

28.04.01 НАНОТЕХНОЛОГИИ И МИКРОСИСТЕМНАЯ ТЕХНИКА

(код и наименование направления подготовки/специальности)

Освоение **ДИСШИПЛИНЫ** велется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

НАНОТЕХНОЛОГИИ

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Аддитивные технологии» входит в программу магистратуры «Нанотехнологии» по направлению 28.04.01 «Нанотехнологии и микросистемная техника» и изучается в 1 семестре 1 курса. Дисциплину реализует Базовая кафедра «Нанотехнологии и микросистемная техника». Дисциплина состоит из 2 разделов и 4 тем и направлена на изучение основных понятий аддитивных технологий; классификации аддитивных технологий; оборудования для изготовления изделий с применением аддитивных технологий; расходных материалов для аддитивных технологий; разработки изделий в компьютерных программах для 3D печати.

Целью освоения дисциплины является формирование у студентов инженерных компетенций в области изготовления изделий с применением аддитивных технологий

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Аддитивные технологии» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ОПК-7	Способен разрабатывать и актуализировать научно-техническую документацию в области нанотехнологий и микросистемной техники	ОПК-7.1 Знаком с основными подходами к разработке методических и нормативных документов, технической документации в области нанотехнологий и микросистемной техники; ОПК-7.2 Владеет подходами для руководства разработкой технической документации и нормативных документов в области нанотехнологий и микросистемной техники;
ПК-5	Способность разрабатывать технологии изготовления наноструктурированных покрытий с заданными свойствами и проводить исследования их характеристик	ПК-5.1 Знает основные технологии изготовления наноструктурированных покрытий с заданными свойствами; ПК-5.2 Умеет проводить исследования характеристик наноструктурированных покрытий с заданными свойствами; ПК-5.3 Владеет методами разработки технологии изготовления наноструктурированных покрытий с заданными свойствами;
ПК-8	Способность разрабатывать новые технологические процессы производства микрои наноразмерных электромеханических систем	ПК-8.1 Знает основные современные технологические процессы производства микро- и наноразмерных электромеханических систем; ПК-8.2 Владеет навыками разработки новых технологических процессов производства микро- и наноразмерных электромеханических систем;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Аддитивные технологии» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Аддитивные технологии».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-7	Способен разрабатывать и актуализировать научно-техническую документацию в области нанотехнологий и микросистемной техники		Углеродные нанотрубки, фуллерены и гидрофобная сажа; Научно-исследовательская работа; Технологическая практика;
ПК-8	Способность разрабатывать новые технологические процессы производства микро- и наноразмерных электромеханических систем		Технологическая практика; Технология производства гетероструктурных интегральных схем**; Технология изготовления устройств нано- и микросистемной техники**; Углеродные нанотрубки, фуллерены и гидрофобная сажа; Синтез композиционных материалов методом 3D принтинга**; Синтез композиционных материалов методом электроспиннинга**; Преддипломная практика;
ПК-5	Способность разрабатывать технологии изготовления наноструктурированных покрытий с заданными свойствами и проводить исследования их характеристик		Технология производства гетероструктурных интегральных схем**; Технология изготовления устройств нано- и микросистемной техники**; Углеродные нанотрубки, фуллерены и гидрофобная сажа; Технологическая практика; Преддипломная практика;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Аддитивные технологии» составляет «4» зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Вид учебной работы	ВСЕГО, ак.ч.		Семестр(-ы)	
вид ученной работы			1	
Контактная работа, ак.ч.			36	
Лекции (ЛК)	18		18	
Лабораторные работы (ЛР)	0		0	
Практические/семинарские занятия (С3)	18		18	
Самостоятельная работа обучающихся, ак.ч.	90		90	
Контроль (экзамен/зачет с оценкой), ак.ч.	18		18	
Общая трудоемкость дисциплины	ак.ч.	144	144	
	зач.ед.	4	4	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)			Вид учебной работы*	
Раздел 1 опр Кл	Основные термины и определения.	1.	1	Исторические предпосылки появлени аддитивных технологий	1Я	ЛК, СЗ
	Классификация аддитивных технологий	1.	2	Классификация аддитивных технолог	гий	ЛК, СЗ
Раздел 2	Оборудование и материалы для	2.	1	Аддитивные технологии с использова тепловых процессов	анием	ЛК, СЗ
	аддитивных технологий	2.	2	3D печать электронных компонентов		ЛК, СЗ

^{* -} заполняется только по $\underline{\mathbf{OYHOЙ}}$ форме обучения: JK – лекции; JP – лабораторные работы; C3 – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ${\color{red} {\bf OFЯ3ATEЛЬНO}!}$

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Бунтов, Е. А. Современные устройства и элементы наноэлектроники : учебнометодическое пособие / Е. А. Бунтов, А. С. Вохминцев, Т. В. Штанг. 2-е изд., стер. Москва : ФЛИНТА : Изд-во Урал. ун-та, 2022. 132 с. ISBN 978-5-9765-5036-0 (ФЛИНТА) ; ISBN 978-5-7996-3090-4 (Изд-во Урал. ун-та)
 - 2. Аддитивные технологии в производстве изделий аэрокосмической техники :

учебное пособие для вузов / А. Л. Галиновский, Е. С. Голубев, Н. В. Коберник, А. С. Филимонов; под общей редакцией А. Л. Галиновского. — 2-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2024. — 145 с. — (Высшее образование). — ISBN 978-5-534-16005-5

- 3. Аддитивные технологии и прототипирование : учебно-методическое пособие / Подкопаев С. А., Демишкевич Э. Б. ; МГТУ им. Н. Э. Баумана (национальный исследовательский ун-т). М. : Изд-во МГТУ им. Н. Э. Баумана, 2021. 48 с. : ил. Библиогр. в конце кн. ISBN 978-5-7038-5642-0
- 4. Аддитивные технологии в производстве металлических конструкций: учебник / Щербаков А. В., Гапонова Д. А., Слива А. П. [и др.]; ред. Григорьянц А. Г., Драгунов В. К.; Национальный исследовательский ун-т "МЭИ". М.: Изд-во МЭИ, 2022. 675 с.: рис., табл. Библиогр. в конце глав. ISBN 978-5-7046-2493-6 Пополнительная литература:
- 1. Валетов В. А. Аддитивные технологии (состояние и перспективы). Учебное пособие. СПб.: Университет ИТМО, 2015, 63с
- 2. Основы быстрого прототипирования / А.Н. Поляков, А.И. Сердюк, К. Романенко, И.П. Никитина; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет». Оренбург: ОГУ, 2014. 128 с
- 3. Дубровский Р. В. Компьютерные технологии в науке и производстве: Учебнометодический комплекс / Р.В. Дубровский. Электронные текстовые данные. М.: Изд-во РУДН, 2013. 126 с ISBN 978-5-209-05007-0: 195.56

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Аддитивные технологии».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!
- 8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Аддитивные технологии» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

Поноли	Агасиева Светлана
Доцент	Викторовна
Должность, БУП	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП:	
Заведующий кафедрой	Попов Сергей Викторович
Должность БУП	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:	
	Агасиева Светлана
Доцент	Викторовна
Должность, БУП	Фамилия И.О.

РАЗРАБОТЧИК: