Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребфедеральное чосударственное автономное образовательное учреждение высшего образования должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 27.05.2024 10:55:59

Уникальный программный ключ:

ca953a0120d891083f9396730

Инженерная академия

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕПЛОВЫХ ПРОЦЕССОВ

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

15.04.05 КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МАШИНОСТРОИТЕЛЬНЫХ ПРОИЗВОДСТВ

(код и наименование направления подготовки/специальности)

ЛИСШИПЛИНЫ ведется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

ПРОЕКТИРОВАНИЕ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Математическое моделирование тепловых процессов» входит в программу магистратуры «Проектирование энергетических установок» по направлению 15.04.05 «Конструкторско-технологическое обеспечение машиностроительных производств» и изучается в 1 семестре 1 курса. Дисциплину реализует Базовая кафедра «Энергетическое машиностроение». Дисциплина состоит из 6 разделов и 6 тем и направлена на изучение методов математического моделирования тепловых процессов тепловых двигателей.

Целью освоения дисциплины является формирование знаний в вопросах математического моделирования тепловых процессов установок с паровыми и газовыми турбинами. Задача дисциплины — формирование практических навыков в вопросах математического моделирования тепловых процессов установок с ПГТ.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Математическое моделирование тепловых процессов» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции	
шфр	TO::merengin	(в рамках данной дисциплины)	
		ОПК-2.1 Применяет на практике знания современного	
		состояние науки в отечественном и мировом машиностроении;	
	Способен разрабатывать	ОПК-2.2 Решает научные, технические, организационные и	
	современные методы	экономические проблемы конструкторско-технологического	
ОПК-2	исследования, оценивать и	обеспечения машиностроительных производств;	
	представлять результаты	ОПК-2.3 Выполняет математическое моделирование	
	выполненной работы	процессов, средств и систем машиностроительных производств	
		с использованием современных технологий проведения	
		научных исследований;	
		ОПК-6.1 Выполняет разработку производственно-	
	Способен разрабатывать и	технологической документации на основе современных	
	применять алгоритмы и	алгоритмов и цифровых систем, учитывая особенности их	
	современные цифровые	технологического использования;	
	системы автоматизированного	ОПК-6.2 Применяет стандартные программные средства в	
ОПК-6	проектирования	области конструкторско-технологического обеспечения	
	производственно-	машиностроительных производств;	
	технологической документации	ОПК-6.3 Применяет физико-математические методы для	
	машиностроительных	решения задач в области конструкторско-технологического	
	производств	обеспечения машиностроительных производств с	
		использованием стандартных программных средств;	
		ПК-4.1 Производит анализ и теоретическое обобщение	
	Определение основных	научных данных в соответствии с задачами исследования,	
	проблем соответствующей	организует сбор и изучение научно-технической информации	
	научной области с	по теме;	
	использованием при их	ПК-4.2 Применяет актуальную нормативную документацию в	
ПК-4	решении сложных задач	соответствующей области знаний;	
	выбора, современных методов	ПК-4.3 Способен применять методы и средства планирования,	
	научного исследования,	организации, проведения и внедрения научных исследований и	
	решения прикладных	опытно-конструкторских разработок с использованием	
	исследовательских задач	современных методов исследования, решения прикладных	
		исследовательских задач;	

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Математическое моделирование тепловых процессов» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Математическое моделирование тепловых процессов».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-2	Способен разрабатывать современные методы исследования, оценивать и представлять результаты выполненной работы		САЕ-системы в машиностроении; Methodology of Scientific Research; Новые конструкционные материалы; Методика и практика технических экспериментов;
ОПК-6	Способен разрабатывать и применять алгоритмы и современные цифровые системы автоматизированного проектирования производственнотехнологической документации машиностроительных производств		Компьютерные технологии в машиностроении; Технология энергетического машиностроения;
ПК-4	Определение основных проблем соответствующей научной области с использованием при их решении сложных задач выбора, современных методов научного исследования, решения прикладных исследовательских задач		Научно-исследовательская работа (получение первичных навыков научно-исследовательской работы); Научно-исследовательской работа; Преддипломная практика; Методика и практика технических экспериментов; Математические методы обработки экспериментальных данных; Экономическое обоснование научных решений; Патентоведение и защита интеллектуальной собственности;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

^{** -} элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Математическое моделирование тепловых процессов» составляет «4» зачетные единицы. Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Duz vinofino i noficire	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			1	
Контактная работа, ак.ч.	36		36	
Лекции (ЛК)			18	
абораторные работы (ЛР)		0		
Практические/семинарские занятия (СЗ)	18		18	
Самостоятельная работа обучающихся, ак.ч.	81		81	
Контроль (экзамен/зачет с оценкой), ак.ч.	27		27	
Общая трудоемкость дисциплины	ак.ч. 144		144	
	зач.ед.	4	4	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
Раздел 1	Моделирование свойств рабочих тел в тепловых процессах.	1.1	Задачи, возникающие при математическом моделировании процессов в теплоэнергетике и связанные с расчётом свойств рабочих тел.	ЛК, ЛР, СЗ
Раздел 2	Основы математического моделирования тепловых процессов.	2.1	Классификация основных задач, возникающиих при моделировании процессов в теплоэнергетике (задачи прочности, гидродинамики, сопряжённого теплообмена), Основные этапы решения каждой из них, пример широко распространённых пакетов прикладных программ для их решения.	ЛК, ЛР, СЗ
Раздел 3	Математические модели гидро- и газодинамики.	3.1	Общее представление об основных задачах расчёта течений регулирующих и не регулирующих сред применительно к моделированию процессов в теплоэнергетике. Основные и наиболее широко используемые математические модели ламинарных и турбулентных течений.	ЛК, ЛР, СЗ
Раздел 4	Математические модели многофазных течений и горения.	4.1	Описание наиболее широко используемых моделей течений многофазных сред, в том числе с процессами горения.	ЛК, ЛР, СЗ
Раздел 5	Математические модели теплопереноса.	5.1	Основные модели теплопереноса для решения задач сопряжённого теплообмена, постановка граничных условий при решении задач сопряжённого теплообмена.	ЛК, ЛР, СЗ
Раздел 6	Математические модели для расчёта состояния напряжённо- деформированных тел.	6.1	Основные математические модели для расчётов состояния напряжённо-деформированных тел, модели сред и методы решения уравнений, лежащих на основе данных моделей.	ЛК, ЛР, СЗ

^{* -} заполняется только по $\underline{\mathbf{OYHOЙ}}$ форме обучения: $\mathit{ЛК}$ – лекции; $\mathit{ЛP}$ – лабораторные работы; $\mathit{C3}$ – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Компьютерный класс	Компьютерный класс для проведения занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная персональными компьютерами (в количестве [Параметр] шт.), доской	

	(экраном) и техническими средствами мультимедиа презентаций.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Аверченков В. И., Федоров В. П., Хейфец М. Л. Основы математического моделирования технических систем. Брянск: Брянский государственный технический университет 2012
- 2. 2.В.М. Пестриков Математическое моделирование теплотехнических задач в программируемых средах [Текст]: учебное пособие М-во образования и науки РФ, СПбГТУРП. СПб.: СПбГТУРП 2009

Дополнительная литература:

- 1. Бараков А.В. Моделирование и алгоритмизация задач теплоэнергетики: учебное пособие / А.В. Бараков, А.А. Надеев, В.И. Ряжских. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2015. 198 с.
- 2. Голдаев С.В. Практикум по математическому моделированию в теплоэнергетике: учебное пособие / С.В. Голдаев. Томск: Изд-во Томского политехнического университета, 2011. 152 с.
- 3. Бондарь А.Г. Математическое моделирование в химической технологии / А.Г. Бондарь. Киев: «Вища школа», 1973. 280 с.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Математическое моделирование тепловых процессов».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Математическое моделирование тепловых процессов» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

РАЗРАБОТЧИК:

		Ощепков Петр
Доцент		Платонович
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП:		
Заведующий кафедрой		Радин Юрий Анатольевич
Должность БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:		
		Вивчар Антон
Заведующий кафедрой		Николаевич
Должность, БУП	Подпись	Фамилия И.О.