Уникальный программный ключ: ca953a0120d891083f939673078ef1a989dae18a

Academy of Engineering

LUMUMBA

RUDN University

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Mathematical Modelling

course title

Recommended by the Didactic Council for the Education Field of: 08.04.01 Civil Engineering

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Civil Engineering and Built Environment

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course <u>Mathematical Modelling</u> is to gain knowledge, skills, skills and experience in the field of correct calculation of structures that characterize the stages of competence formation and ensure the achievement of the planned results of the development of the educational program.

The main objectives of the course are the following.

Various structures and structures, the design and construction of which the engineer is engaged in, must be correctly calculated from the point of view of mathematics and physics. For the calculation of complex structures, and especially when taking into account time factors, knowledge of partial differential equations is simply necessary.

The task of the course is to teach the student to solve complex mathematical problems, to be able to classify them and apply them in practice with different boundary conditions

2. REQUIREMENTS FOR LEARNING OUTCOMES

The course <u>Mathematical Modelling</u> implementation is aimed at the development of the following competences (competences in part):

Table 2.1. List of competences that students acquire during the course <u>«Mathematical</u> Modelling»

Modelling Compet ence code	Competence descriptor	Competence formation indicators (within this course)
GC-1	situations on the basis of a	GC-1.1 Analyzes the problem, identifying its basic components;GC-1.2 Identifies and ranks the information required to solve the task;GC-1.3 Selects ways to solve the problem, analyzes the possible consequences of their use
	Able to solve problems of professional activity on the basis of theoretical and prac-tical foundations, the math-ematical apparatus of the fundamental sciences	GPC-1.1 Selects a mathematical model suitable for the professional problem to be solved, sets the required parameters and boundary conditions; GPC-1.2 Solves mathematical modeling problems using suitable analytical, numerical, or numerical- analytical methods; GPC-1.3 Solves professional problems using modern software systems for mathematical, digital modeling of structures
	Able to set and solve scientific and technical problems in the field of construction, construction industry and housing and communal services on the basis of knowledge of industry problems and experience in their solution	GPC-3.1 Able to formulate and solve scientific and technical tasks in the field of building structures design
GPC-6	Able to carry out research of objects and processes in the field of construction and housing and communal services	GPC-6.2 Able to choose appropriate research methods and carry out research according to the chosen methodology; GPC-6.3 Capable of processing, analyzing and drawing up research results

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course <u>Mathematical Modelling</u> refers to the *core component* of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other disciplines (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course <u>Mathematical Modelling</u>.

Comp etence code	Competence descriptor	Previous courses / modules, internships	Subsequent courses / modules, internships
GC-1	Able to critically analyze problem situations on the basis of a systematic approach, to develop a strategy of action		Geoinformation Systems and Applications; Independent Research Work (obtaining basic skills of research work); Introductory Practice; Desin Practice; Technological Practice; Independent Research Work
GPC-1	Able to solve problems of professional activity on the basis of theoretical and prac- tical foundations, the math-ematical apparatus of the fundamental sciences		Independent Research Work (obtaining basic skills of research work); Desin Practice; Independent Research Work
GPC-3	Able to set and solve scientific and technical problems in the field of construction, construction industry and housing and communal services on the basis of knowledge of industry problems and experience in their solution		BIM-Technology in Construction Management; Independent Research Work (obtaining basic skills of research work); Desin Practice; Technological Practice; Independent Research Work
GPC-6	Able to carry out research of objects and processes in the field of construction and housing and communal services		Geoinformation Systems and Applications; Independent Research Work (obtaining basic skills of research work); Independent Research Work

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the internship results.

4. COURSE WORKLOAD

The total workload of the course <u>Mathematical Modelling</u> is <u>3</u> credits. *Table 4.1 Academic activities types by periods of the higher education programme*.

Type of academic	Total	Semester(s)		
activities	academic	1		
	hours			
Contact academic hours	36	36		
including:				

Type of aca	demic	Total		Sem	ester(s)	
activiti	es	academic	1			
		hours				
Lectures (LC)		18	18			
Lab works (LW)	18	18			
Seminars (work	shops /	0	0			
tutorials) (S)	× 1					
Self-studies		72	72			
academic hours						
Evaluation and		0	0			
assessment acad	demic					
hours						
Course work / project,						
credits						
Course	academi	108	108			
workload	c hours					
	credits	3	3			

5. COURSE CONTENTS

Modules	Contents (topics)	Academic activities types *
Section 1. The subject and tasks of the course "mathematical modeling of spatial structures"	Topic 1.1 Place, purpose and advantage of mathematical modelling in the process of knowledge of objects and natural phenomena. Model, as a tool for the investigation of objects and phenomena and as a tool for managing them. Prerequisites for the successful application of mathematical modelling. Abstract model by R. Kalman. Classification of objects by type of behavior. Analytical and simulation models. Topic 1.2 Stages of mathematical modelling. Historical experience in the formation of mathematical models and solving practical problems by means of mathematics. The task of the trajectory of a ray of light reflecting from a mirror. The problem of the trajectory of a refractive Brachistochrone problem. Models based on the principle of least action and the principle of equilibrium.	LC, LW
Section 2. Basic fundamental laws in mechanics	 Topic 2.1 Principles of causality. Equations of state. Postulates about space and time. The law of conservation. Topic 2.2 The least action. The principle of Lagrange. Hamilton-Ostrogradsky principle. Topic 2.3 Stable and unstable equilibrium. Euler equations. Principle d'Alembert. 	LC, LW
Section 3. The concept of a mathematical model	Topic 3.1 The concept of the model of the object or phenomenon. Mathematical model. The requirement for a mathematical model. Topic 3.2 General technology for solving practical problems using mathematics. The sequence of	LC, LW

Modules	Contents (topics)	Academic activities types *
	construction and testing of mathematical models on the examples of the simplest problems of mechanics: stretching and compression of the beam. Bending of the beam, loss of stability of the beam. Topic 3.3 The test of a mathematical model is an assessment of the state of an object. Models for controlling the parameters of objects and phenomena. The multiplicity of questions about the manifestations of objects and phenomena and the generality of models. Check the adequacy of	
Section 4. Formation of mathematical models	 mathematical models. Simplified models. Topic 4.1 Ideas used as the basis of mathematical models. Reflection of properties and characteristics of objects in a mathematical model. Idealization and abstraction. Mathematical language of the formation of a practical problem. Characteristic concepts for describing objects and phenomena (energy, mass, force, space, time, etc.) and qualitative and quantitative representation in models. Topic 4.2 Covariance Tasks of analysis and synthesis. Determining relationships and empirical dependencies in mathematical models. Dimension of the quantities and formulas expressing the problem. Simplification and refinement of the mathematical model. The dimension of the tasks. Analysis of the impact of simplifications and clarifications. 	LC, LW
Section 5. Types of mathematical models	Topic 5.1 Structural and functional models. Discrete and continuous, linear and nonlinear models. Simulation of partial differential equations. The problem of the shapes of the searchlight mirror. Linearization. Variational models. Likely models. Other types of models. Hierarchy of mathematical models. Mathematics Mode Closure	LC, LW
Section 6. Methods for solving problems formulated by mathematical models	Topic 6.1 The investigation of the mathematical problem generated by the created mathematical model. Existence, multiplicity and uniqueness of solutions. The choice of mathematical methods for solving the formulated problem. Exact and close solution. Variational tasks. Topic 6.2 The boundary value problem and the Cauchy problem. Analytical solution. Asymptotic expansions. Ritz method. Bubnov-Galerkin Method. Discretization of tasks. Euler method. Reduction of the solution to the solution of problems of linear algebra. Finite difference method and finite element method.	LC, LW

Modules	Contents (topics)	Academic activities types *
	Topic 6.3 Systems of linear equations and their	<i>.</i>
	solution. The problem of eigenvalues. Search for	
	extremums of functions and functionals. Newton's	
	method for solving nonlinear problems. Research	
	solutions. Selection and control of solution	
	accuracy. Dimensional control. Verification of	
	models.	
Section 7.	Topic 7.1 The concept of computational	LC, LW
The use of computing in	experiment. Triad "model-algorithm-program".	
mathematical modelling	Numerical simulation. A preliminary investigation	
	of mathematical models. Qualitative analysis.	
	Dimensionless analysis of the problem.	
	Topic 7.2 Approximate solutions. Exact solutions.	
	Algorithm solutions. Programming and problem	
	solving software. Carrying out computer	
	calculations and their analysis. Planning	
	calculations. Processing calculation results. Refinement of computational models.	
Section 8.	Topic 8.1 Representation of a solid body as a	LC, LW
Mathematical modelling	continuum. Other simplifying hypotheses and	LC, LW
in problems of	assumptions. Elastic body Plastic body Internal	
mechanics of a	forces, stresses, deformations, displacements.	
deformable solid	Stress-strain state of a solid. Strain tensor, stress	
	tensor and principal stress. Hooke's law as an	
	equation of state. Static equilibrium equations and	
	equilibrium equations in motion. Compatibility	
	equations of deformations.	
	Topic 8.2 The expression of the change of	
	energy. The formulation and solution of problems	
	of statics and dynamics of a rigid body. Two	
	dimensional and one-dimensional problems of the	
	theory of elasticity.	
	Topic 8.3 Construction of mathematical models	
	and solving problems of mechanics of liquids and	
	gases. Ideal incompressible fluid. Viscous fluid.	
	Perfect gas. Setting goals. Euler's equation for the	
	motion of an ideal fluid. Tasks hydrostatics. Perfect	
	fluid movement and viscous fluid movement.	
	Navier-Stokes equation. Waves in liquid and gas.	
Section 9.	Topic 9.1 Ideas involved in the construction of	LC, LW
Problems of finding the	mathematical models of optimization problems.	
optimal solution and	Variational tasks. The formulation and solution of	
their mathematical	the Brachistochrone problem. The simplest problems	
modelling	of finding the optimal solution and solving them	
	mathematically. Tasks on the best size of a tin can.	
	Economical tasks in construction.	
	Mathematical programming. Modelling by goal	
* * * * * * * * * *	function and constraint inequalities -time training: LC - lectures; LW - lab work; S - seminars.	

* - to be filled in only for full -time training: LC - lectures; LW - lab work; S - seminars.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

<i>Tuble</i> 0.1. C	lassroom equipment and technology support red	Junemenns
Type of	Classroom equipment	Specialized educational /
academic		laboratory equipment,
activities		software and materials for
		course study (if necessary)
Lectures	An auditorium for conducting lectures,	
	equipped with a set of specialized furniture;	
	a blackboard (screen) and technical means	
	for multi-media presentations.	
Lab works	An auditorium for laboratory work,	Computer laboratory
	equipped with a set of specialized furniture	
	and equipment.	
Computer Labs	A classroom for conducting classes, group	Software:
	and individual consultations, current and	MS Office
	mid-term assessment, equipped with	MathCAD
	personal computers (in the amount of 14	Lira
	pcs), a board (screen) and technical means of	SCAD Office
	multimedia presentations.	
Self-studies	A classroom for independent work of	
	students (can be used for seminars and	
	consultations), equipped with a set of	
	specialised furniture and computers with	
1		
	access to the electronic information and	

Table 6.1. Classroom equipment and technology support requirements

7. RESOURCES RECOMMENDED FOR INTERNSHIP

Main readings:

1. Jódar L., Carlos Cortés, Juan, Rodríguez L. A. Mathematical Modelling in Engineering & Human Behaviour 2022 ISBN 9783038978046 <u>URL:https://mdpi.com/books/pdfview/book/1233</u> *Additional readings:*

1.Alder M. An Introduction to Mathematical Modelling //Heavenforbooks. com. – 2023 http://www.mtm.ufsc.br/~daniel/matap/IntMatMod.pdf

2. Knox, Gordon D. Engineering / by Gordon D. Knox ; edited by Ellison Hawes 275p.

URL:http://dlib.rsl.ru/rsl01004000000/rsl01004445000/rsl01004445020/rsl01004445020.pdf

3. Jurgita Antuchevičienė (Ed.), Edmundas Kazimieras Zavadskas (Ed.), Jonas Šaparauskas (Ed.), Sustainakility in Construction Engineering 2018 Lee JSDN

(Ed.). Sustainability in Construction Engineering 2018 1 c. ISBN

9783038971665 URL: <u>http://www.mdpi.com/books/pdfview/book/754</u> Resources of the Internet information and telecommunications network»

Internet sources:

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) <u>http://lib.rudn.ru/MegaPro/Web</u>

- EL "University Library Online" http://www.biblioclub.ru
- EL "Yurayt" http://www.biblio-online.ru
- EL "Student Consultant" <u>www.studentlibrary.ru</u>
- EL "Lan" http://e.lanbook.com/
- EL "Trinity Bridge"

2. Databases and search engines:

- electronic foundation of legal and normative-technical documentation http://docs.cntd.ru/
- Yandex search engine https://www.yandex.ru/

- Google search engine <u>https://www.google.ru/</u>

- Scopus abstract database <u>http://www.elsevierscience.ru/products/scopus/</u> *The training toolkit and guidelines for a student:*

1. Collection of lectures on the course Mathematical Modelling.

* The training toolkit and guidelines for the course are placed on the internship page in the university telecommunication training and information system under the set procedure.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS INTERNSHIP RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course <u>Mathematical Modelling</u> results are specified in the Appendix to the internship syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor in the Department		
of Construction Technology and		
Structural Materials		Elsheikh A.M.
position, educational department	signature	name and surname
position, educational department	signature	name and surname
HEAD OF EDUCATIONAL DEPAR Head of the Department of	RTMENT:	
Construction Technology and		
Structural Materials		A.V. Solovyeva
position, educational department	signature	name and surname
HEAD OF		
HIGHER EDUCATION PROGRAM	IME:	
Associate Professor of the		
Department of Construction		
Technology and Structural		M.I. Rynkovskaya
Materials		
position, educational department	signature	name and surname