Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребов Олег Александрович

Должность: Ректор

Дата подписания: 27.02.2025 15:40:33

Приложение к рабочей программе дисциплины (практики)

Уникальный программный ключ: ca953a0120d8910831939873078e11a989dae18a высшего образования «Российский университет дружбы народов имени Патриса Лумумбы» (РУДН)

Факультет искусственного интеллекта

(наименование основного учебного подразделения)

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ (ПРАКТИКЕ)

МАТЕМАТИЧЕСКАЯ ЛОГИКА И ТЕОРИЯ АЛГОРИТМОВ

(наименование дисциплины (практики))

Оценочные материалы рекомендованы МССН для направления подготовки/ специальности:

10.03.01 ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ

(код и наименование направления подготовки/ специальности)

Освоение дисциплины (практики) ведется в рамках реализации основной образовательной профессиональной программы $(O\Pi$ BO, профиль/ специализация):

ОРГАНИЗАЦИЯ И ТЕХНОЛОГИИ ЗАЩИТЫ ИНФОРМАЦИИ (ПО ОТРАСЛИ ИЛИ В СФЕРЕ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ)

(направленность (профиль) ОП ВО)

1. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ (ПРАКТИКЕ)

1. Виды контроля по периодам обучения

2.1 Материалы для проведения текущего контроля:

Вариант самостоятельной работы (части 1) Вариант 0

- 1. Теоретический вопрос. Основные подходы к формализации понятия алгоритма.
- 2. Найти (в аналитическом виде) функцию f(x, y), полученную из функций $g(x) = x^4$ и h(x, y, z) = (y + 2)xz по схеме примитивной рекурсии, доказать аналитический вид функции f(x, y) методом математической индукции.
- 3. Решить задачу Коши $y'=e^x$ при начальном условии $y_0=1$ методом Эйлера на отрезке [1; 3] с шагом h=0,5 на равномерной сетке. При уменьшении шага вдвое вычислить погрешность при использовании данного метода.

Вариант контрольной работы (2-й части) Вариант 0

1. Исследовать на полноту систему булевых функций:

$$\Phi = \{ f_1 = x_1 \lor x_2, f_2 = x_1 \oplus x_2 \}.$$

2. Решить задачу коммивояжера, используя алгоритм метода ветвей и границ.

0	30	50	10	20
30	0	40	20	50
50	40	0	30	60
10	20	30	0	50
20	50	60	50	0

- 1. Какая из записей некорректна:
- A) $\{2, 1, 3\}$;
- B) $\{2\}$;
- C)(1, 1, 2);
- D) нет некорректных записей.
- 2. Элементы множества могут являться:
- А) числами;
- В) буквами как латинского, так и греческого алфавита;
- С) кортежами;
- D) логическими операциями.
- 3. Справедливо следующее:
- А) каждая вторая функция может быть представлена и притом единственным образом своим полиномом Жегалкина;
- В) не каждая булева функция может быть представлена и притом единственным образом своим полиномом Жегалкина;

- С) каждая булева функция может быть представлена и притом единственным образом своим полиномом Жегалкина;
- D) никакая булева функция не может быть представлена и притом единственным образом своим полиномом Жегалкина.
- 4. Под бинарными понимаются отношения:
- А) между двумя элементами двух разных множеств;
- В) между двумя элементами множества;
- С) между, как минимум, двумя элементами множества либо двух разных множеств;
- D) ничего из перечисленного.
- 5. Простое высказывание это:
- А) утверждение, об истинности либо ложности которого можно судить в данный момент;
- В) предложение в повелительном наклонении без отрицания либо с отрицанием;
- С) высказывание, не содержащее в себе других высказываний;
- D) ничего из перечисленного.
- 6. Утверждение "Два множества равны, если они являются подмножествами друг друга":
- А) верно не для любых множеств;
- В) верно;
- С) неверно;
- D) требует дополнительного исследования.
- 7. Логическое тождество можно доказывать:
- А) с помощью диаграмм Эйлера-Венна;
- В) с помощью таблиц истинности;
- С) с помощью правильных логических рассуждений, преобразуя его левую и/или правую часть;
- D) только с помощью примеров.
- 8. Примерами кортежей являются:
- А) долгота и широта некоторой географической точки;
- В) один человек в магазинной очереди;
- С) множество шаров, лежащих в урне;
- D) ничего из перечисленного.
- 9. Дизъюнктивная нормальная форма представляет собою:
- А) конъюнкцию дизъюнктов;
- В) дизъюнкцию конъюнктов;
- С) квадратную логическую матрицу;
- D) всегда ортогональную дизьюнктивную нормальную форму.
- 10. Отображение представляет собою:
- А) всегда неубывающую функцию;
- В) всегда частичную функцию;
- С) полную функцию;
- D) множество, состоящее из двух элементов.

$Tecт N^{\underline{0}}2$ по дисциплине	"Математическая логика и теория алгоритмов"	Группа
	ФИО студента	

- 1. Утверждение "Предикат становится утверждением при нулевом числе его аргументов":
- А) верно;
- В) неверно;
- С) некорректно;
- D) требует дополнительного исследования.
- 2. Утверждения "всякая эффективно вычислимая функция частично-рекурсивна" и "всякий интуитивный алгоритм может быть реализован с помощью некоторой машины Тьюринга":
- А) равнозначны;

- В) неравнозначны;
- С) не имеют никакого смысла в сфере теории алгоритмов;
- D) некорректны.
- 3. Утверждение "Никакое нетривиальное свойство вычислимых функций не является алгоритмически разрешимым":
- А) верно;
- В) неверно;
- С) связано с понятиями синтаксиса алгоритма и семантики алгоритма;
- D) бессмысленно.
- 4. Блок-схемы алгоритмов:
- А) отражают связи в алгоритме только по управлению;
- В) отражают связи в алгоритме только по информации (данным);
- С) отражают связи в алгоритме как по управлению, так и по информации;
- D) ничего из перечисленного.
- 5. Лента в машине Тьюринга:
- А) никогда не останавливается;
- В) не может быть бесконечной;
- С) всегда неподвижна относительно считывающей головки машины Тьюринга;
- D) ничего из перечисленного.
- 6. Функция Аккермана:
- А) является примитивно-рекурсивной;
- В) не является примитивно-рекурсивной;
- С) является синонимом понятия "общерекурсивная функция".
- D) ничего из перечисленного.
- 7. Примитивно-рекурсивная функция:
- А) может быть получена из исходных (простейших) функций с помощью конечного числа применений суперпозиции и примитивной рекурсии;
- В) всегда стремится к нулю;
- С) всегда вдвое меньше частично-рекурсивной функции;
- D) не может иметь практического применения.
- 8. Понятие совместной рекурсии:
- А) существует;
- В) не существует;
- С) не имеет смысла;
- D) существует, но не может применяться к функциям.
- 9. Функции бывают:
- А) общерекурсивными;
- В) частично-рекурсивными;
- С) частичными;
- D) биективными.
- 10. Число всех функций k-значной логики от n переменных равно:

A)
$$n^{k^k}$$
; B) n^{k^n} ; C) k^{k^k} ; D) k^{k^n} .

2.2 Материалы для проведения промежуточной аттестации:

- 5-й семестр
- 1. Вид промежуточной аттестации зачет с оценкой.
- 2. Форма проведения письменная работа с последующим устным собеседованием.
- 3. Перечень тем, вопросов, практических заданий, выносимых на промежуточную аттестацию:

Типовые вопросы к дифференцированному зачёту

- 1. Представление булевых функций формулами.
- 2. Критерии полноты систем булевых функций.
- 3. Понятия булевой функции, высказывания и предиката, примеры.
- 4. Полиномы Жегалкина.
- 5. Классификация функций К-значной логики.
- 6. Особенности К-значной логики.
- 7. Упрощение логических выражений и метод Квайна.
- 8. Классическое определение исчисления высказываний.
- 9. Взаимосвязь логической терминологии и алгебры множеств.
- 10. Аксиоматизации исчисления высказываний.
- 11. Составляющие исчисления предикатов первого порядка.
- 12. Логика предикатов.
- 13. Метод резолюции для исчисления предикатов первого порядка.
- 14. КНФ и ДНФ. Совершенные КНФ и совершенные ДНФ.
- 15. Предикаты и кванторы.
- 16. Основные подходы к формализации понятия алгоритма.
- 17. Представления Тьюринга и Чёрча об алгоритмах.
- 18. Основные требования к алгоритмам.
- 19. Примитивно-рекурсивные функции и функции Аккермана.
- 20. Общерекурсивные и частично-рекурсивные функции.
- 21. Представления алгоритмов Тьюрингом.
- 22. Машины Тьюринга и их применение при анализе алгоритмов.
- 23. Сложностные классы задач.
- 24. Полиномиальный и недетерминированно-полиномиальный классы задач.
- 25. Примеры вычислительных алгоритмов.
- 26. Применения вычислительных алгоритмов.
- 27. Понятие о численных методах и их реализация в вычислительных алгоритмах.
- 28. Блок-схемы как один из подходов к формализации понятия алгоритма.

Экзаменационный билет №0 (образец)

- 1. Справедливо следующее:
- А) Каждая вторая функция может быть представлена и притом единственным образом своим полиномом Жегалкина;
- В) Не каждая булева функция может быть представлена и притом единственным образом своим полиномом Жегалкина;
- С) Каждая булева функция может быть представлена и притом единственным образом своим полиномом Жегалкина;
- D) Никакая булева функция не может быть представлена и притом единственным образом своим полиномом Жегалкина.
- 2. Система булевых функций $\{f_1, f_2, ...\} = P$ называется (функционально) полной, если:
- А) каждая булева функция может быть реализована формулой над этой системой;
- В) только одна булева функция может быть реализована формулой над этой системой;
- С) не каждая булева функция может быть реализована формулой над этой системой;
- D) не более 3-х булевых функций могут быть реализованы формулой над этой системой.
- 3. Утверждения "всякая эффективно вычислимая функция частично-рекурсивна" и "всякий интуитивный алгоритм может быть реализован с помощью некоторой машины Тьюринга":
- А) равнозначны;
- В) неравнозначны;
- С) не имеют никакого смысла в сфере теории алгоритмов;

- D) некорректны.
- 4. Утверждение "Никакое нетривиальное свойство вычислимых функций не является алгоритмически разрешимым":
- А) верно;
- В) неверно;
- С) связано с понятиями синтаксиса алгоритма и семантики алгоритма;
- D) бессмысленно.
- 5. Теоретический вопрос. Представление булевых функций формулами.
- 6. Теоретический вопрос. Основные подходы к формализации понятия алгоритма.
- 7. **Задача**. Найти (в аналитическом виде) функцию f(x, y), полученную из функций g(x) = x и h(x, y, z) = yxz по схеме примитивной рекурсии, доказать аналитический вид функции f(x, y) методом математической индукции.

8. Задача. Решить задачу коммивояжера, используя метод ветвей и границ

0	30	50	10	20
30	0	40	20	50
50	40	0	30	60
10	20	30	0	50
20	50	60	50	0

Составление билетов производится, исходя из следующих основополагающих принципов: а) формирование от первого до последнего задания – от простого – к сложному (при этом студенту не запрещено на самом экзамене либо зачёте выполнять задания билета в произвольном порядке); б) принципиальная возможность выполнения студентом большей части заданий билета без использования устройств хранения и передачи информации, а также без шпаргалок; в) стремление к простоте и ясности формулировки теоретического вопроса и практического задания, а также тестовых вопросов.

О форме и процедуре проведения соответствующего вида промежуточной аттестации важно отметить, что экзамен (зачёт) проводится в письменной форме в виде ответов на вопросы билета и выполненных заданий, длительностью 90 минут, в соответствии с действующим Регламентом.

Промежуточная аттестация проводится в форме зачёта с оценкой (дифференцированного зачёта) либо экзамена в письменной форме.

Оценка знаний студентов осуществляется в баллах с учетом:

- оценки за работу в семестре (выполнение домашних заданий, решение задач, выполнение домашней контрольной работы, активность работы студентов на практических занятиях и др.);
- оценки итоговых знаний в ходе зачёта с оценкой либо экзамена.

2. Критерии и показатели оценивания результатов обучения

2.1 Планируемые результаты обучения по дисциплине

Таблица № 1

Результаты освоения образовательной программы (Код и формулировка компетенций)	Уровень освоения компетенции	Перечень планируемых результатов обучения по дисциплине (в целях формирования названной компетенции)
ОПК-2 способность применять соответствующий математический	базовый	Знать: основные понятия и методы математического анализа; основные понятия и методы аналитической геометрии; основные понятия и методы линейной алгебры и теории алгебраических систем; основные понятия и методы теории функций комплексного переменного; основные понятия и методы теории вероятностей и математической статистики; основные понятия и методы математической логики и теории алгоритмов, теории

аппарат для		информации и кодирования; математические методы обработки
решения		экспериментальных данных;
профессиональных		Уметь: использовать математические методы и модели для решения
задач		прикладных задач; применять основные законы физики при решении
, .		прикладных задач; использовать программные и аппаратные средства
		персонального компьютера; формулировать на математическом языке
		проблемы, поставленные в терминах других предметных областей;
		составлять математические модели типовых профессиональных задач и
		находить способы их решений; интерпретировать профессиональный
		(физический) смысл полученного математического результата; применять
		аналитические и численные методы решения поставленных
		профессиональных задач; приобретать новые математические знания,
		используя современные образовательные и информационные технологии.
		Владеть: навыками математической логики, необходимой для
		формирования суждений по соответствующим профессиональным,
		научным, социальным и этическим проблемам; методами анализа и синтеза
		изучаемых явлений и процессов; методами количественного анализа
		процессов обработки, поиска и передачи информации; навыками
TTIC 11	<u></u>	проведения физического эксперимента и обработки его результатов; Знать: основные принципы экспериментальных исследований.
ПК-11	базовый	1 1 1
способность		соотношение теоретического и экспериментального знания; Уметь: работать с аппаратурой, приборами и схемами, которые
проводить		используются в технологических лабораториях, и понимать принципы их
эксперименты по		действия; ориентироваться в современной и вновь создаваемой технике с
заданной методике,		целью ее быстрого освоения, внедрения и эффективного использования в
обработку, оценку		практической деятельности;
погрешности и		Владеть: приемами и методами решения конкретных задач из различных
достоверности их		областей технологии, уметь делать оценки и расчеты для анализа явлений и
результатов		процессов.

2.2 Критерии и показатели оценки

Таблица № 2

	Оценка			
Критерии	«отлично»	«хорошо	«удовлетвор	«неудовлетв
		»	ительно»	орительно»
Полностью освоен теоретический и практический материал				
дисциплины, практические задания выполняются без				
ошибок, теоретические задания выполняются с				
необходимыми обоснованиями (в объеме, предусмотренном				
программой дисциплины).				
Студент знает основы математической логики и теории				
алгоритмов, необходимые для решения прикладных задач	+			
(в сфере информационной безопасности); умеет (без				
ошибок) применять методы математической логики и				
теории алгоритмов для решения прикладных задач;				
полностью владеет навыками применения методов				
количественного анализа процессов обработки				
информации.				
Освоен теоретический и практический материал				
дисциплины, допускаются незначительные ошибки в				
применении алгоритмов при решении задач, часть				
теоретических заданий выполняется без предусмотренных				
программой обоснований.				
Студент хорошо знает основы математической логики;		+		
умеет (возможно, с незначительными ошибками) применять				
методы математической логики и теории алгоритмов для				
решения прикладных задач (в сфере информационной				
безопасности);				
владеет навыками применения методов количественного				
анализа процессов обработки информации.				
Теоретический и практический материал дисциплины				
освоен частично, но в объёме, позволяющем решать			+	
основные типовые задачи дисциплины.				
Студент частично знает основы математической логики и				

	Оценка			
Критерии	«отлично»	«хорошо	«удовлетвор	«неудовлетв
		»	ительно»	орительно»
теории алгоритмов; умеет, но с ошибками, применять				
методы и математической логики для решения прикладных				
задач (в сфере информационной безопасности); частично				
владеет навыками применения методов количественного				
анализа процессов обработки и поиска информации.				
Теоретический и практический материал дисциплины не				
освоен				+

2.3 Порядок выставления общей оценки в рамках экзамена, зачета и т.д.

В соответствии с действующей на ФИБ МГЛУ балльно-рейтинговой системой (БРС).

100-балльная система	5-балльная система
91-100	отлично
76-90	хорошо
51-75	удовлетворительно
менее 51	неудовлетворительно
51-100	зачтено
менее 51	не зачтено

Методические рекомендации к проведению занятий

Цель методических рекомендаций помочь в подготовке и проведении лекций и практических занятий по дисциплинам образовательных программ высшего образования молодому преподавателю, другим преподавателям, ранее ее не преподававшим, а также специалистам-практикам, не имеющим опыта преподавательской работы.

Рекомендации по подготовке к преподаванию дисциплины

На первом занятии преподаватель:

- знакомит студентов с целями и задачами преподаваемой дисциплины, определяет ее место в образовательной программе, обозначает междисциплинарные связи;
- обеспечивает согласование содержания и устранение дублирования учебного материала с другими дисциплинами образовательной программы;
- уточняет наполнение лекций и планы практических (семинарских) занятий в соответствии с рабочей программой дисциплины, с учетом контингента и уровня подготовки студентов;
 - рекомендует литературу с выделением основного учебника курса;
 - доводит до сведения студентов систему оценки знаний по 100-бальной шкале.

Методические рекомендации по подготовке и проведению лекционных занятий (теоретический курс)

Лекционные занятия (теоретический курс) являются одной из наиболее распространенных форм учебного процесса.

Пекция представляет собой систематическое, последовательное, монологическое изложение преподавателем (лектором) учебного материала, как правило, теоретического характера.

Лекция - своеобразный жанр научного стиля со специфическими признаками: своей терминологией, фразеологией и этикетом, принятым в образовательной среде.

Цель лекционной формы обучения - организация целенаправленной познавательной деятельности студентов по овладению программным материалом учебной дисциплины.

Задачи лекции:

- обеспечить формирование системы и структурирования массива знаний по учебной дисциплине;
- отражать новые, еще не получившие освещения в учебниках и учебных пособиях знания, аргументировано излагая научный материал;
 - формировать профессиональный кругозор и общую культуру.

Функции лекции:

- информационная изложение системы знаний;
- мотивационная формирование познавательного интереса к содержанию учебного предмета и профессиональной мотивации будущего специалиста;
- -воспитательная формирование сознательного отношения к процессу обучения и стремления к самостоятельной работе.

Структура лекции:

К типичным структурным элементам лекции относятся: вступление, основная часть, заключение.

Вступление - часть лекции, цель которой - заинтересовать и настроить аудиторию на восприятие учебного материала.

В его состав входят:

- формулировка темы лекции, характеристика ее профессиональной значимости, новизны и степени изученности, цели лекции;
- изложение плана лекции, включающего наименование основных вопросов, подлежащих рассмотрению на лекции;
- характеристика рекомендуемой литературы, необходимой для организации самостоятельной работы студентов;
- ретроспектива напоминание о вопросах, рассмотренных на прошлой лекции, связь их с новым материалом.

Основная часть - изложение содержания лекции в строгом соответствии с предложенным планом.

Формат лекции включает: концептуальный и фактический материал, раскрывающий тему лекции, его анализ и оценку, различные способы аргументации и доказательства выдвигаемых теоретических положений. Основная часть определяется видом лекции:

- предметная лекция (курс лекций) является разделом или частью изучаемого теоретического курса, но конкретной дисциплине учебного плана. Она вполне может содержать в себе и проблемные вопросы и обзорную информацию;
- обзорная лекция представляет собой научное обобщение курса, освещение основных тем и узловых проблем, направлена на восстановление полученных ранее знаний или знакомство с каким-то новым, слабо изученным материалом для формирования целостного знания;
- проблемная лекция подает материал как проблему или комплекс проблем, комплекс различных точек зрения на ту или иную сторону рассматриваемого вопроса. Конкретного решения нет, его следует искать вместе и преподавателю, и студентам;

Заключение - подведение общего итога лекции, обобщение материала, формулировка выводов по теме лекции; ответы на вопросы студентов.

Форма лекции может зависеть от ряда условий и, прежде всего, от характера темы и содержания материала.

Текст лекции рассчитан, как правило, на двухчасовое занятие и в зависимости от характера изучаемого материала имеет объем 20-26 страниц текста.

При составлении плана лекции особое внимание следует уделять обоснованному распределению времени на вступительную часть, каждый учебный вопрос и заключительную часть.

Требования к содержанию лекций:

Содержание лекций должно:

- обеспечивать постановку цели и задачи курса (раздела, темы) и строиться с учетом его методологических основ;
 - включать характеристики основных понятий по изучаемой дисциплине;
- учитывать основные направления в развитии представляемой научной дисциплины в решении актуальных проблем;
- отражать системные законы и закономерности, принципы, лежащие в основе изучаемого предмета, актуальные вопросы данного курса (раздела, темы);
- строиться с позиций анализа конкретных сведений, фактов и явлений, иллюстрирующих основные теоретические положения в их взаимосвязи.

Критерии оценки качества лекции:

- соответствие темы и содержания лекции учебному плану и рабочей программе дисциплины;
 - информативность, раскрытие основных понятий темы;
- реализация принципа органической связи теории с практикой, сочетание теоретического материала с конкретными примерами, раскрытие практического значения излагаемых теоретических положений;
 - реализация внутрипредметных и междисциплинарных связей;

- связь с профилем подготовки студентов, их будущей специальностью;
- научность, соответствие современному уровню развития науки;
- точность используемой научной терминологии.

Рекомендации преподавателям для облегчения восприятия и усвоения лекционного материала студентами

- 1. Для раскрытия сложных теоретических положений следует приводить наиболее интересные факты, простые и яркие примеры.
- 2. При любой возможности необходимо показывать связь излагаемого научного материала с практикой, значение приобретаемых знаний в будущей практической деятельности по избранной специальности.
- 3. Рекомендуется максимально использовать в процессе чтения лекций наглядные пособия и технические средства обучения. Для этого разрабатываются презентации; каждый слайд должен содержать основные положения и сопровождаться дополнительными примерами и пояснениями преподавателя. Удачно подобранные иллюстративные материалы и слайды способствуют повышению эффективности лекции.
- 4. Лекция должна выходить за рамки даже самого нового и качественного учебника.
- 5. Темп лекции должен быть несколько замедленным; важнейшие положения необходимо повторить, специальные термины объяснить и дать возможность правильно записать. В то же время лектор не может снижать темп изложения до диктовки.
- 6. Начиная со второй лекции, для проверки усвоения материала, следует задавать студентам вопрос по содержанию предыдущей лекции. Диалоговое общение может строиться как живой диалог лектора со студентами и по ходу лекции на тех этапах, где это целесообразно. Весьма эффективной является комбинация монологического и эвристического методов изложения лекционного материала.
- 7. Очень важно увязать содержание лекции с последующими за ней практическими (семинарскими) занятиями.
- 8. Использование приемов поддержания внимания и снятия усталости студентов на лекции (риторические вопросы, шутки, исторические экскурсы, из опыта научно-исследовательской работы, творческой работы преподавателя).
- 9. В процессе чтения лекции рекомендуется ориентировать студентов относительно литературы, учебников и учебных пособий, тем самым направляя их на самостоятельную работу.
- 10. Важно учитывать контингент и уровень подготовки студентов: лекции на старших курсах отличаются большей широтой и глубиной охвата научных проблем. Лекционное изложение здесь носит более проблемный характер. Преподаватель входит в контакт со студентами не как «законодатель», а как собеседник, пришедший на лекцию «поделиться» с ними своим личностным восприятием проблемы. Общение со студентами строится таким образом, чтобы подвести их к самостоятельным выводам, сделать соучастниками процесса поиска и нахождения путей разрешения противоречий, созданных самим же преподавателем.
- 11. Чтение лекций для студентов-заочников имеет свою специфику и требует от лектора высокой квалификации и достаточного педагогического опыта. Лекционный курс на заочном отделении в объеме сокращен, но он не может в силу этого механически уменьшаться или облегчаться. Профессор или доцент, читающий лекции студентам-заочникам, должен ставить перед собой следующие цели:
 - дать общее представление о проблематике научной дисциплины;
- концентрировать главное внимание не на фактологии, а на методологии изучаемого предмета;

- на основе анализа узловых проблем дать целостное представление о закономерностях развития науки в области изучаемой дисциплины;
- дать указания по основной методологической и специальной литературе, учебникам и учебным пособиям;
- направить самостоятельную работу студентов-заочников путем методических советов и рекомендаций.
- 12. В академической лекции, излагающей ту или иную науку, раскрываются методы и термины, знание которых совершенно необходимо для студентов. Однако лектор не должен злоупотреблять научной терминологией. Язык науки не имеет ничего общего с "наукообразным" языком. Нельзя забывать о том, какое тягостное впечатление производит на студентов обилие в лекции специальных терминов. Следует продуманно и экономно пользоваться терминологией. В процессе подготовки лекции надо определить, какие новые термины будут введены и разъяснены.
- 13. Лектору не следует увлекаться употреблением иностранных слов, когда они могут быть заменены русскими. Иностранные слова, вводимые в изложение без толка и нарочито, засоряют лекцию. Нельзя забывать, что неправильное произношение иностранных слов и незнание их точного значения считаются самой курьезной ошибкой лектора.
- 14. Лекция является жанром ораторской речи, отличным от книжного стиля. Важнейшими качествами хорошей лекции являются выразительность и образность. Лекция должна быть яркой и убедительной. Лектор должен заботиться не только о том, что сказать, но и как сказать. К его речевой культуре предъявляются высокие требования. Лектора слушают десятки, иногда сотни студентов, которые воспринимают не только содержание лекции, но и язык. Правильный литературный язык лектора способствует обогащению и развитию речи студентов. Небрежность в речи лектора снижает качество лекции.
- 15. Преподавателю рекомендуется оказывать помощь в конспектировании лекции (акцентирование изложения материала лекции, выделение голосом, интонацией, темпом речи наиболее важной информации, использование пауз для записи таблиц, вычерчивания схем и т.п.).

Методические рекомендации по подготовке и проведению практических (семинарских) занятий

Практические (семинарские) занятия - одна из форм систематических занятий, на которых студенты под руководством преподавателя приобретают необходимые умения и навыки по тому или иному разделу определенной дисциплины, входящей в учебный план.

Кафедрам рекомендуется разработать сборники задач, упражнений, вопросов и заданий, сопровождающихся методическими указаниями применительно к конкретным дисциплинам.

Цель практических (семинарских) занятий - предоставление возможностей для углубленного изучения теории, овладения практическими навыками и выработки самостоятельного творческого мышления у студентов.

Задачи:

- отражение в учебном процессе современных достижений науки;
- углубление теоретической и практической подготовки студентов;
- приближение учебного процесса к реальным условиям работы того или иного специалиста;
- формирование умения применять полученные знания на практике, осуществлять вычисления и расчеты;
 - развитие инициативы и самостоятельности студентов;

- формирование навыков публичного выступления, способности представлять результаты проведенного исследования, умения вести дискус-

сию;

- контроль за освоением учебной дисциплины.

Функции практических (семинарских) занятий:

- учебно-познавательная закрепление, расширение, углубление знаний, полученных на лекциях и в ходе самостоятельных занятий;
- обучающая школа публичного выступления, развитие навыков отбора и обобщения информации;
- стимулирующая определенный стимул к дальнейшей пробе своих творческих сил и подготовке к более активной работе;
- воспитательная формирование мировоззрении и убеждений, воспитание самостоятельности, научного поиска, состязательности, смелости;
- контролирующая в проверке уровня знаний и качества самостоятельной работы студента.

Обучение студентов на практических (семинарских) занятиях направлено на:

- обобщение, систематизацию, углубление, закрепление полученных теоретических знаний по дисциплине;
- формирование умений (аналитических, проектировочных, конструктивных и др.) применять полученные знания на практике;
 - реализацию единства интеллектуальной, практической деятельности;
- формирование практических умений выполнять определенные действия, операции, необходимые в последующей профессиональной деятельности;
- -выработку при решении поставленных задач таких профессионально значимых факторов, как самостоятельность, ответственность, точность.

Применимы различные виды практических (семинарских) занятий:

- контрольно-обучающийся семинар занятие, в ходе которого осуществляется фронтальный опрос, письменные классные контрольные работы;
- -обучающий семинар это занятие, на котором в центре внимания самостоятельные выступления студентов;
 - творческая дискуссия, диспут, публичная защита рефератов;
 - практическое занятие по решению задач, анализу ситуаций, деловые игры.

Рекомендации преподавателям для облегчения освоения студентами практических навыков в ходе практического (семинарского) занятия:

- 1. Преподаватель составляет план каждого занятия, в который входит: определение целей и задач, подбор материала к занятию, подбор литературы, рекомендуемой студентам к данной теме, разработка рекомендаций студентам по организации самостоятельной работы в ходе подготовки к практическому (семинарскому) занятию, распределение пунктов плана по времени, моделирование вступительной и заключительной частей семинара.
- 2. Тема практического занятия (семинара) и основные вопросы обсуждения объявляются преподавателем заранее.
- 3. Преподаватель, ведущий практические (семинарские) занятия должен находиться в постоянном контакте с лектором потока.
- 4. Преподаватель может использовать любую из форм проведения практических (семинарских) занятий: обсуждение сообщений, докладов, рефератов, выполненных студентами по результатам учебных или научных исследований под руководством преподавателя, семинар-диспут, упражнения на самостоятельность мышления, письменная контрольная работа, коллоквиум, собеседование, решение ситуационных задач, кейсов, расчетных заданий и других современных технологий обучения. Выполнение расчетов, вычислений, работа с документацией,

инструктивными справочниками, составление проектной, плановой и другой специальной документацией.

- 5. Состав заданий для практического занятия должен быть спланирован так, чтобы за отведенное время их выполнили большинство студентов.
- 6. Преподавателю следует направлять ход обсуждений на формирование навыков профессиональной полемики и закрепление обсуждаемого материала. На практических (семинарских) занятиях студенты учатся грамотно излагать проблемы, свободно высказывать свои суждения, рассматривать ситуации, способствующие профессиональной компетенции.
- 7. Во время проведения практических занятий подводятся итоги самостоятельной работы студентов по усвоению обсуждаемой научной проблемы. Особое значение имеет ознакомление студентов с методикой работы с учебной и научной литературой, навыками ее использования при самостоятельной работе, при подготовке к практическим (семинарским) занятиям.
- 8. При проведении практических (семинарских) занятий в интерактивной форме (деловая, ролевая игра, ток-шоу и т.п.) преподавателю необходимо продумать и довести до студентов правила проведения, роли, функции, схемы взаимодействия участников, а также систему оценивания.
- 9. Строить ход практических занятий следует таким образом, чтобы студенты, овладев первоначальными профессиональными навыками и умениями, смогли в дальнейшем закрепить их в процессе практики и написания курсовых и дипломной работы.