Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребф едеральное чтосударственное автономное образовательное учреждение высшего образования Должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 29.05.2025 16:03:34

Уникальный программный ключ: Учебно-научный институт гравитации и космологии са<u>953а0120d891083f939673078ef1a3836ae18a</u> на настилу пред настилу пред настилу пред настину пред настину

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

КВАНТОВАЯ ГРАВИТАЦИЯ

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

03.04.02 ФИЗИКА

(код и наименование направления подготовки/специальности)

лисциплины ведется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

ГРАВИТАЦИЯ, КОСМОЛОГИЯ И РЕЛЯТИВИСТСКАЯ АСТРОФИЗИКА

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Quantum gravity» входит в программу магистратуры «Гравитация, космология и релятивистская астрофизика» по направлению 03.04.02 «Физика» и изучается в 3 семестре 2 курса. Дисциплину реализует Кафедра гравитации и космологии . Дисциплина состоит из 6 разделов и 6 тем и направлена на изучение различных подходов к квантованию гравитации.

Целью освоения дисциплины является формирование знаний и вычислительных компетенций в части изучения различных подходов к квантованию гравитации и их приложениям к физике черных дыр и космологии.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Квантовая гравитация» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
УК-6	Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки	УК-6.2 Вырабатывает инструменты и методы управления временем при выполнении конкретных задач, проектов, целей;
ОПК-1	Способен применять фундаментальные знания в области физики для решения научно-исследовательских задач, а также владеть основами педагогики, необходимыми для осуществления преподавательской деятельности;	ОПК-1.1 Знает основные направления развития современной физики и современные методики преподавания физических дисциплин;
ПК-1	Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта	ПК-1.1 Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Квантовая гравитация» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Квантовая гравитация».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
УК-6	Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки	Modern problems in physics; Philosophical problems in science; History and methodology of physics; General astronomy; Quaternion Algebra, Fractal Space and General Theory of Mechanics; Relativistic astrophysics and cosmology; Classical gravity theory; Introduction to classical field theory; Special physics practice;	Prediploma practice;
ОПК-1	Способен применять фундаментальные знания в области физики для решения научно-исследовательских задач, а также владеть основами педагогики, необходимыми для осуществления преподавательской деятельности;	Pedagogical practice; Scientific research work; Quaternion Algebra, Fractal Space and General Theory of Mechanics; Relativistic astrophysics and cosmology; Classical gravity theory; Introduction to classical field theory; Modern problems in physics;	Research Work;
ПК-1	Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта	Pedagogical practice; Scientific research work; Quaternion Algebra, Fractal Space and General Theory of Mechanics; Reference frames**; Advanced theoretical physics II**; Black hole and wormhole physics**; Stellar evolution and galaxy dynamics**; Advanced theoretical physics I**; Quantum field theory**; Theory of the atomic nucleus**; Relativistic astrophysics and cosmology; Classical gravity theory; Introduction to classical field theory; Special physics practice; Advanced theoretical physics III**; Particle and quark theory**; Action-at-a-distance physics**;	Prediploma practice; Research Work;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

^{** -} элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Quantum gravity» составляет «3» зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Duz wośca w noścawa	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			3	
Контактная работа, ак.ч.	актная работа, ак.ч. 54		54	
Лекции (ЛК)	36		36	
абораторные работы (ЛР)		0		
Практические/семинарские занятия (СЗ)	18		18	
Самостоятельная работа обучающихся, ак.ч. 36			36	
Контроль (экзамен/зачет с оценкой), ак.ч.	18		18	
Общая трудоемкость дисциплины	ак.ч.	108	108	
	зач.ед.	3	3	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	,	чы (мооуля) по виоам учеонои раооты Содержание раздела (темы)	Вид учебной работы*
Раздел 1	Классификация схем квантования гравитации	1.1	Куб Зельманова. Фундаментальные константы. Планковские единицы. Комптоновская длина, гравитационный и Боровский радиусы. Квантовая механика и квантовая теория поля в искривленном пространстве-времени. Квантовая геометродинамика. Квантование слабых гравитационных полей. Петлевая квантовая гравитация. Супергравитация. Теория суперструн.	ЛК, СЗ
Раздел 2	Квантовая механика заряда в гравитационном поле	2.1	Уравнение Шредингера в искривленном пространстве-времени. Нерелятивистский случай с учетом силы ДеВитта. Гравиатом. Волновые функции и энергетический спектр. Водородоподобный и осцилляторный предельные случаи.	ЛК, СЗ
Раздел 3	Электромагнитное и гравитационное излучение гравиатомов	3.1	Электрическое дипольное и квадрупольное излучение и гравитационное излучение атома водорода и гравиатома. Характерные размеры системы и характерные частоты излучения. Силы осциллятора. Интенсивности излучения.	ЛК, СЗ
Раздел 4	Квантовая геометродинамика	4.1	Уравнение Переса. Суперпространство. Уравнение Уилера-ДеВитта в пространстве 3- геометрий и в минисуперпространстве. Гамильтонова связь.	ЛК, СЗ
Раздел 5	Квантовая космология	5.1	Квантование уравнения Фридмана для многокомпонентной среды. Рождение Вселенной как туннелирование. Энергетические уровни и вероятность рождения Вселенной, параметры квантовых космологических моделей и ограничения, налагаемые на них наблюдательной космологией. Рождение вселенной в лаборатории. Квантовый гравитационный коллапс. Квантование анизотропных космологических моделей.	ЛК, СЗ
Раздел 6	Квантовая теория поля в искривленном пространстве-времени	6.1	Эффект Казимира. Эффективная температура вакуума. Эффект Хокинга. Испарение черных дыр. Эффект Унру. Горизонт Риндлера. Связь эффективной температуры вакуума с температурной функцией Грина. Рождение частиц. Преобразщования Боголюбова. Рождение частиц во фридмановских моделях. Число Эддингтона. Уравнения квантовой теории поля для бозонов и фермионов в искривленном пространстве-времени. Конформные преобразования.	ЛК, СЗ

^{*} - заполняется только по $\underline{\mathbf{O}\mathbf{\Psi}\mathbf{H}\mathbf{O}\mathbf{\check{u}}}$ форме обучения: JK - лекции; JP - лабораторные работы; $\mathit{C3}$ - практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается **ОБЯЗАТЕЛЬНО!**

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Ч. Мизнер, К. Торн, Дж. Уилер. Гравитация, т.3. М.: Мир, 1977
- 2. А.Д. Долгов, Я.Б. Зельдович, М.В. Сажин. Космология ранней Вселенной. М.: Изд. Моск. Ун-та, 1988.
- 3. Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика. Нерелятивистская теория. М.: ФМ, 1963.
- 4. А.А. Гриб, С.Г. Мамаев, В.М. Мостепаненко. Квантовые эффекты в интенсивных внешних полях. М.: Атомиздат, 1980 Дополнительная литература:
- 1. А.Д. Линде. Физика элементарных частиц и инфляционная космология. М.: Наука, 1990.
 - 2. И.Д. Новиков. Как взорвалась Вселенная. М.: Наука, 1988.
 - 3. Дж. Уилер, Предвидение Эйнштейна. М.: Мир, 1970.
- 4. В.М. Мостепаненко, Н.Н. Трунов. Эффект Казимира. М.: Энергоатомиздат, 1990

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru

- ЭБС «Троицкий мост»
- 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Квантовая гравитация».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС</u>!

РАЗРАБОТЧИК:

доцент УНИГК		Фильченков М. Л.
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП:		
Зав. каф. гравитации и		
космологии		Ефремов А. П.
Должность БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:		
Директор УНИГК		Ефремов А. П.
Должность, БУП	Подпись	Фамилия И.О.