Документ подписан простой электронной подписью	
Информация о владельце ederal State Autor	omous Educational Institution of Higher Education
ФИО: Ястребов Олег Александрович	
Должность: Perfeoples' FRIENDSHI	UNIVERSITY OF RUSSIA NAMED AFTER PATRICE
Дата подписания: 24.09.2024 10:29:17	LUMUMBA
Уникальный программный ключ:	DUDN University
ca953a0120d891083f939673078ef1a989dae18a	RUDN University

Academy of Engineering

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Mathematical modeling of thermal processes

course title

Recommended by the Didactic Council for the Education Field of:

13.04.03. POWER ENGINEERING

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Mechanical Engineering

higher education programme profile/specialisation title

1. The COURSE GOAL

The discipline "Mathematical modeling of thermal processes" is included in the master's degree program "Mechanical Engineering" in the direction of 13.04.03 "Energy Engineering" and is studied in the 1st semester of the 1st year. The discipline is implemented by the Basic Department of Energy Engineering. The discipline consists of 6 sections and 6 topics and is aimed at studying methods of mathematical modeling of thermal processes of heat engines.

The purpose of mastering the discipline is to form knowledge in the mathematical modeling of thermal processes of installations with steam and gas turbines. The task of the discipline is the formation of practical skills in the mathematical modeling of thermal processes of installations with PGT.

2. REQUIREMENTS FOR LEARNING OUTCOMES:

The following competences are formed in the study process.

Table 2.1. List of competences that students acquire during the course

Compet	Competence descriptor	Competence formation indicators
ence		
code		
GC-1	Ability to carry out a critical analysis of	GC-1.1. Analyzes the problematic situation
	problematic situations based on a systematic	and decomposes it into separate tasks;
	approach, develop a strategy for action.	GC-1.2. Develops a strategy for solving the
		task;
		GC-1.3. Forms possible solutions to problems.
GPC-2	Ability to apply modern research methods, evaluate	GPC-2.1. Selects the necessary research
	and present the results of the work performed.	method to solve the task;
		GPC-2.2. Analyzes the results obtained;
		GPC-2.3. Represents the results of the work
		performed.

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The subject refers to the variable component of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other disciplines and internships that contribute to the achievement of the expected learning outcomes as results of the subject mastery

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the course results

Com-		Previous	Subsequent
petence	Competence descriptor	courses/modules,	courses/modules,
code		internships*	internships*
GC-1	Ability to carry out a critical analysis of		Special chapters of the
	problematic situations based on a systematic		theory of heat engines
	approach, develop a strategy for action.		Automatic heat engine
			control
			Alternative Energy
			Sources
			Practice in obtaining
			primary skills of
			research work.
GPC-	Ability determine and implement the priorities of	-	Modern issues of
2	his own activities and ways to improve them		power engineering
	based on self-assessment		science and
			manufacture.

* - in accordance with the matrix of competencies and the SUP EP VO

4. WORKLOAD OF THE COURSE AND FORMS OF STUDY WORK

General workload of the course 4 credits, 144

hours.Table 4.1. Form of study work of EP HE

Type of academic		Total	Semester(s)			
activit	ties	academic	1			
		hours				
Contact acade	mic hours	36	36			
including:						
Lectures (LC)		18	18			
Lab works (LW	V)	0	0			
Seminars (workshops /		18	18			
tutorials) (S)	_					
Self-studies		72	72			
academic hour	·s					
Evaluation and		0	0			
assessment academic						
hours						
Course work / project,		0	0			
credits						
Course	academic	108	108			
workload	hours					
	credits	3	3			

5.CONTENT OF THE COURSE

Table 5.1. Content of the course

The title of the section of the discipline	Content of the section (topic)	Types of educa- tional work*
Section 1 Modeling the	Problems arising in the mathematical modeling of processes in	LC,
properties of working	thermal power engineering and related to the calculation of the	SM,
bodies in thermal processes.	properties of working bodies.	AW
Section 2 Fundamentals	Classification of the main problems arising in the modeling of	LC,
of mathematical	processes in thermal power engineering (problems of strength,	SM,
modeling of thermal	hydrodynamics, conjugate heat transfer), The main stages of solving	AW
processes.	each of them, an example of widespread application software packages for solving them.	
Section 3	Общее представление об основных задачах расчёта течений	LC,
Mathematical models	регулирующих и не регулирующих сред применительно к	SM,
of hydro- and gas	моделированию процессов в теплоэнергетике. Основные и	AW
dynamics.	наиболее широко используемые математические модели	
	ламинарных и турбулентных течений.	
Section 4	Описание наиболее широко используемых моделей течений	LC,
Mathematical models	многофазных сред, в том числе с процессами горения.	SM,
of multiphase flows		AW
and gorenje.		
Section 5	Основные модели теплопереноса для решения задач	LC,
Mathematical models	сопряжённого теплообмена, постановка граничных условий при	SM,
of heat transfer.	решении задач сопряжённого теплообмена.	AW
Section 6	Basic mathematical models for calculating the state of stress-strain	LC,
Mathematical models	bodies, models of media and methods for solving equations based on	SM,
for calculating the state	these models.	AW
of stress-deformed		

bodies.	
* - LC – lecture, LR – laborate	ory work, SM – seminars; AW – Autonomous work

6. INTERNSHIP EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS *Table 6.1. Technical Support Requirements*

A type of aclassroom	Technical Support Requirements	Special equipment, software
For lectures	An auditorium for lecture-type classes, equipped with a set of specialized furniture; board (screen) and technical means of multi- media presentations	Technical means: projector Epson EH- TW5300 (LCD, 1080p 1920 x 1080, 2200Lm, 35000:1, 2 x HDMI, MHL, экран Draper Bar-onet NTSC (3:4) 244/96(8) 152*203 MW
For seminars	Auditorium for seminar-type classes, group and individual consultations, current control and intermediate certification, equipped with a set of specialized furniture and technical means of multimedia presentations	Computer class; technical equipment: personal computers, projection screen, multimedia projector, NEC NP-V302XG, Internet access. Software: Microsoft products (OS, office suite, incl. MS Office/Office 365, Teams, Skype),
For autonomous work	Auditorium for independent work of students (can be used for seminars and consultations), equipped with a set of specialized furniture and computers with access to the EIOS	Computer class; technical equipment: personal computers, projection screen, multimedia pro- jector, NEC NP-V302XG, Internet access. Software: Microsoft products (OS, office suite, including. MS Office/Office 365, Teams, Skype)

7.RESOURCES RECOMMENDED FOR THE COURSE:

Main literature:

1. Аверченков В. И., Федоров В. П., Хейфец М. Л. Основы математического моделирования технических систем. Брянск: Брянский государственный технический университет 2012

2. В.М. Пестриков Математическое моделирование теплотехнических задач в программируемых средах [Текст]: учебное пособие М-во образования и науки РФ, СПбГТУРП. – СПб.: СПбГТУРП 2009

Additional readings:

1. Бараков А.В. Моделирование и алгоритмизация задач теплоэнергетики: учебное пособие / А.В. Бараков, А.А. Надеев, В.И. Ряжских. – Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2015. – 198 с.

2. Голдаев С.В. Практикум по математическому моделированию в теплоэнергетике: учебное пособие / С.В. Голдаев. – Томск: Изд-во Томского политехнического университета, 2011. – 152 с.

3. Бондарь А.Г. Математическое моделирование в химической технологии / А.Г. Бондарь. – Киев: «Вища школа», 1973. – 280 с.

Electronic library systems:

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) <u>http://lib.rudn.ru/MegaPro/Web</u>
- EL "University Library Online" http://www.biblioclub.ru
- EL "Yurayt" http://www.biblio-online.ru
- EL "Student Consultant" <u>www.studentlibrary.ru</u>
- EL "Lan" <u>http://e.lanbook.com/</u>
- EL "Trinity Bridge"

2. Databases and search engines:

- electronic foundation of legal and normative-technical documentation http://docs.cntd.ru/

- Yandex search engine https://www.yandex.ru/

- Google search engine <u>https://www.google.ru/</u>

- Scopus abstract database <u>http://www.elsevierscience.ru/products/scopus/</u>

The training toolkit and guidelines for a student:

1. Collection of lectures on the course Mathematical modeling of thermal processes.

* The training toolkit and guidelines for the course are placed on the internship page in the university telecommunication training and information system under the set procedure.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS INTERNSHIP RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course <u>Mathematical modeling of thermal processes</u> results are specified in the Appendix to the internship syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor in the Department of Energy Engineering	t	Oshchepkov P.P.	
position, educational department	signature	name and surname	
HEAD OF EDUCATIONAL DEPAR	RTMENT:		
Head of the Department of Energy Engineering		Yu.A. Radin	
HEAD OF			
HIGHER EDUCATION PROGRAM	IME:		
Head of the Department of		Vu A Radin	
Energy Engineering		1 u.7 1. Kuum	
position, educational department	signature	name and surname	