Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребфедеральное тосударственное автономное образовательное учреждение высшего образования Должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы»

Дата подписания: 22.05.2024 14:52:04

Уникальный программный ключ Факультет физико-математических и естественных наук са953a0120d891083f939673078ef1a969dae18a

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

02.03.02 ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

(код и наименование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Имитационное моделирование» входит в программу бакалавриата «Фундаментальная информатика и информационные технологии» по направлению 02.03.02 «Фундаментальная информатика и информационные технологии» и изучается в 6 семестре 3 курса. Дисциплину реализует Кафедра теории вероятностей и кибербезопасности. Дисциплина состоит из 4 разделов и 9 тем и направлена на изучение программных средств имитационного моделирования.

Целью освоения дисциплины является изучение фундаментальных основ теории моделирования информационных систем и протекающих в них процессов, методик разработки компьютерных моделей, методов и средства осуществления имитационного моделирования и обработки результатов вычислительных экспериментов, формирование представления о работе с современными инструментальными системами моделирования.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Имитационное моделирование» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

		Индикаторы достижения компетенции	
Шифр	Компетенция	(в рамках данной дисциплины)	
		ОПК-1.1 Знает основные положения и концепции в области	
	Способен применять	математических и естественных наук; знает основную	
	фундаментальные знания,	терминологию;	
	полученные в области	ОПК-1.2 Умеет осуществлять первичный сбор и анализ	
ОПК-1	математических и (или)	материала, интерпретировать различные математические	
	естественных наук, и использовать	объекты;	
	их в профессиональной	ОПК-1.3 Имеет практический опыт работы с решением	
	деятельности	стандартных математических задач и применяет его в	
		профессиональной деятельности;	
	G	ОПК-2.1 Знает основные положения и концепции в области	
	Способен применять	программирования, архитектуру языков программирования,	
	компьютерные/суперкомпьютерные	знает основную терминологию, знаком с содержанием	
OHIIC 2	методы, современное программное	Единого Реестра Российских программ;	
ОПК-2	обеспечение, в том числе	ОПК-2.2 Умеет анализировать типовые языки	
	отечественного происхождения,	программирования, составлять программы;	
	для решения задач	ОПК-2.3 Имеет практический опыт решения задач анализа,	
	профессиональной деятельности	интеграции различных типов программного обеспечения;	
	Способен к разработке		
	алгоритмических и программных	ОПК-3.1 Знает методы теории алгоритмов, методы	
	решений в области системного и	системного и прикладного программирования, основные	
	прикладного программирования,	положения и концепции в области математических,	
	математических, информационных	информационных и имитационных моделей;	
	и имитационных моделей,	ОПК-3.2 Умеет соотносить знания в области	
ОПК-3	созданию информационных	программирования, интерпретацию прочитанного,	
	ресурсов глобальных сетей,	определять и создавать информационные ресурсы	
	образовательного контента,	глобальных сетей, образовательного контента, средств	
	прикладных баз данных, тестов и	тестирования систем;	
	средств тестирования систем и	ОПК-3.3 Имеет практический опыт применения разработки	
	средств на соответствие стандартам	программного обеспечения;	
	и исходным требованиям		
	Способен понимать принципы	ОПК-6.1 Знает базовые принципы цифровых технологий и	
ОПК-6	работы современных	методов, необходимых в профессиональной деятельности в	
OHK-0	информационных технологий и	области фундаментальной информатики и информационных	
	использовать их для решения задач	технологий для: изучения и моделирования объектов	

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
	профессиональной деятельности	профессиональной деятельности, анализа данных,
		представления информации и пр.;
		ОПК-6.2 Умеет применять необходимые в профессиональной
		деятельности цифровые технологии и методы в области
		фундаментальной информатики и информационных
		технологий для: изучения и моделирования объектов
		профессиональной деятельности, анализа данных,
		представления информации и пр.;
		ОПК-6.3 Владеет необходимыми в профессиональной
		деятельности технологиями и методами в области
		фундаментальной информатики и информационных
		технологий для: изучения и моделирования объектов
		профессиональной деятельности, анализа данных,
		представления информации и пр.;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Имитационное моделирование» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Имитационное моделирование».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-1	Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	Математический анализ; Дискретная математика и математическая логика; Физика; Теория вероятностей и математическая статистика; Теория конечных графов; Вычислительные методы; Алгебра и аналитическая геометрия; Дифференциальные уравнения; Компьютерная алгебра; Основы машинного обучения и нейронные сети; Компьютерная геометрия; Марковские процессы;	Методы оптимизации и исследование операций; Анализ больших данных; Технологии интеллектуального анализа данных и прогнозирование;
ОПК-2	Способен применять компьютерные/суперкомпьютер ные методы, современное программное обеспечение, в том числе отечественного происхождения, для решения задач профессиональной деятельности	Основы программирования;	Технологическая (проектно- технологическая) практика; Технологии интеллектуального анализа данных и прогнозирование; Кибербезопасность предприятия; Системы управления

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
		Программная инженерия; Компьютерная алгебра; Архитектура компьютеров и операционные системы; Компьютерная геометрия;	базами данных;
ОПК-3	Способен к разработке алгоритмических и программных решений в области системного и прикладного программирования, математических, информационных и имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных баз данных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям	Технология программирования; Вычислительные методы; Основы машинного обучения и нейронные сети; Теория автоматов и формальных языков; Программная инженерия; Компьютерная геометрия;	Технологии интеллектуального анализа данных и прогнозирование; Технологическая (проектнотехнологическая) практика;
ОПК-6	Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	Вычислительные методы; Алгоритмы машинной графики и обработки изображений; Теория автоматов и формальных языков; Программная инженерия; Обработка данных и визуализация; Основы машинного обучения и нейронные сети; Компьютерная геометрия; Основы формальных методов описания бизнес-процессов;	Технологическая (проектно- технологическая) практика; Технологии интеллектуального анализа данных и прогнозирование;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Имитационное моделирование» составляет «3» зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dur vuotuon notoru	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			6	
Контактная работа, ак.ч.	54		54	
Лекции (ЛК)			0	
Лабораторные работы (ЛР)	торные работы (ЛР) 54		54	
Практические/семинарские занятия (С3)			0	
Самостоятельная работа обучающихся, ак.ч. 54			54	
Контроль (экзамен/зачет с оценкой), ак.ч.	0		0	
Общая трудоемкость дисциплины	ак.ч. 108		108	
	зач.ед.	3	3	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
Раздел 1	Имитационное	1.1	Основы работы в NS-2: общее описание, список некоторых команд. Файл трассировки. NAM.	ЛР
т аздел т	моделирование в NS-2.	1.2	Основы работы в Xgraph. Основы работы в Gnuplot. AWK	ЛР
Denvey 2	Компонентное моделирование. Scilab,	2.1	Понятие динамической и событийно- управляемой системы, гибридные системы. Принципы компонентного компьютерного моделирования. Иерархические системы. Блоки и связи между ними. Ориентированные и неориентированные блоки и связи. Неявные взаимодействия компонентов.	ЛР
Раздел 2	подсистема xcos. OpenModelica.	2.2	Реализация компонентного моделирования в подсистеме хсоѕ математического пакета Scilab. Основные библиотечные блоки. Последовательность построения и отладки хсоѕмоделей. Средства анализа результатов моделирования.	ЛР
		2.3	Реализация моделей в системе OpenModelica.	ЛР
Раздел 3	Сетевые модели и синхронизация событий. Сети Петри.	3.1	Сети Петри, основные понятия и определения. Применение сетей Петри к моделированию программного обеспечения. Задачи синхронизации. Задачи анализа сетей Петри. Методы анализа сетей Петри.	ЛР
		3.2	Основы работы в CPN Tools.	ЛР
	Моделирование систем массового обслуживания и функциональных процессов	4.1	Дискретно-событийный подход к моделированию. Проблемно-ориентированный язык и программная среда GPSS/PC.	ЛР
Раздел 4		4.2	Общие принципы моделирования информационных и вычислительных процессов в GPSS/PC. Базовые сведения о системе: объекты, переменные и выражения, функции. Модель системы: модельное время и статистика. Внутренняя организация: списки и общая внутренняя последовательность событий. Элементы языка моделирования GPSS/PC. Среда моделирования GPSS/PC: операторы, команды управления, интерактивное взаимодействие.	ЛР

^{*} - заполняется только по $\underline{\mathbf{OYHOЙ}}$ форме обучения: $\mathit{ЛK}$ – лекции; $\mathit{ЛP}$ – лабораторные работы; $\mathit{C3}$ – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Компьютерный	Компьютерный класс для проведения	OC Linux, OC Windows,
класс	занятий, групповых и индивидуальных	ns-2, GNU Plot, Xgraph,

	консультаций, текущего контроля и	awk, Scilab, Xcos,
	промежуточной аттестации, оснащенная	OpenModelica, CPNTools,
	персональными компьютерами (в	GPSS.
	количестве [Параметр] шт.), доской	Дополнительное ПО:
	(экраном) и техническими средствами	офисный пакет MS Office
	мультимедиа презентаций.	или LibreOffice, OBS
	-	Studio
		OC Linux, OC Windows,
	Аудитория для самостоятельной работы	ns-2, GNU Plot, Xgraph,
Пла	обучающихся (может использоваться для	awk, Scilab, Xcos,
Для	проведения семинарских занятий и	OpenModelica, CPNTools,
самостоятельной	консультаций), оснащенная комплектом	GPSS. Дополнительное
работы	специализированной мебели и	ПО: офисный пакет MS
	компьютерами с доступом в ЭИОС.	Office или LibreOffice,
	-	OBS Studio

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Королькова А.В., Кулябов Д.С. Моделирование информационных процессов: учебное пособие. М.: РУДН, 2014. 192 с.: ил. Дополнительная литература:
- 1. Моделирование систем массового обслуживания в среде GPSS WORLD : учебнометодическое пособие / С. И. Матюшенко, Д. А. Пяткина, Р. В. Разумчик. Москва : РУДН, 2020. 112 с. : ил.
- 2. Боев В.Д. Концептуальное проектирование систем в AnyLogic и GPSS World [Электронная книга] http://www.intuit.ru/goods_store/ebooks/8650 [Электронный ресурс] http://www.intuit.ru/studies/courses/4818/1066/info. 2013. ISBN: 978-5-9556-0146-5
- 3. Алексеев Е.Р., Чеснокова О.В., Рудченко Е.А. Scilab: Решение инженерных и математических задач, 2008. http://books.altlinux.ru/altlibrary/scilab
- 4. Грекул В.И., Денищенко Г.Н. Коровкина Н.Л. Проектирование информационных систем. Интернет-университет информационных технологий ИНТУИТ.ру, 2008. 308 c.- http://www.intuit.ru/department/se/devis/
- 5. Губарь Ю.В. Введение в математическое моделирование. Интернетуниверситет информационных технологий ИНТУИТ.ру. 2007. http://www.intuit.ru/department/calculate/intromathmodel/
- 6. Советов Б. Я., Яковлев С. А. Моделирование систем. Учебник для ВУЗов. М.:Высшая школа, 1999. 319 с.
 - 7. Бусленко Н.П. Моделирование сложных систем. М.: Наука, 1978. 399 с.
- 8. Питерсон Дж. Теория сетей Петри и моделирование систем. М.: Мир, 1984. 264 с.
- 9. Бычков С.П., Храмов А.А. Разработка моделей в системе моделирования GPSS.Учебное пособие. М.: МИФИ, 1997. 32с.
- 10. Кравченко П. П., Хусаинов Н. Ш. Имитационное моделирование вычислительных систем средствами GPSS/PC. Таганрог: ТРТУ, 2000 г. 116 с.
- 11. Бенькович Е.С., Колесов Ю.Б., Сениченков Ю.Б. Практическое моделирование динамических систем СПб.: БХВ-Петербург, 2002.-464 с.
- 12. Кулябов Д.С., Королькова А.В. Архитектура и принципы построения современных сетей и систем телекоммуникаций. М. 2008. http://lib.rudn.ru/polnotekstovye-knigi/61-Kulyabov.pdf
 - 13. Боев В. Концептуальное проектирование систем в AnyLogic и GPSS World. —

- ИНТУИТ.py. 2013. http://www.intuit.ru/studies/courses/4818/1066/info
- 14. Грекул В. Теория информационных систем. ИНТУИТ.ру. 2009. http://www.intuit.ru/studies/courses/507/363/info
- 15. Кирсанов А. Теория информационных технологий и систем. . ИНТУИТ.ру. 2009. http://www.intuit.ru/studies/courses/1158/315/info

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Имитационное моделирование».
- 2. Лабораторный практикум по дисциплине «Имитационное моделирование».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Имитационное моделирование» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

РАЗРАБОТЧИКИ:

Доцент кафедры теории		
вероятностей и		
кибербезопасности		Королькова А. В.
Должность, БУП	Подпись	Фамилия И.О.
Профессор кафедры теории		Кулябов Д. С.
вероятностей и		
кибербезопасности		
Должность, БУП	Подпись	Фамилия И.О
РУКОВОДИТЕЛЬ БУП: Заведующий кафедрой теории вероятностей и кибербезопасности		Самуйлов К. Е.
Должность БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:		
Заведующий кафедрой теории		
вероятностей и		
кибербезопасности		Самуйлов К. Е.
Должность, БУП	Подпись	Фамилия И.О.