Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чосударственное автономное образовательное учреждение высшего образования должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 28.05.2024 09:20:21

Уникальный программный ключ:

ca953a0120d891083f939673078

Инженерная академия

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ФИЗИКА

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

15.03.05 КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МАШИНОСТРОИТЕЛЬНЫХ ПРОИЗВОДСТВ

(код и наименование направления подготовки/специальности)

ДИСШИПЛИНЫ велется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

СИСТЕМНАЯ ИНЖЕНЕРИЯ МАШИНОСТРОИТЕЛЬНЫХ ПРОИЗВОДСТВ

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Физика» входит в программу бакалавриата «Системная инженерия машиностроительных производств» по направлению 15.03.05 «Конструкторскотехнологическое обеспечение машиностроительных производств» и изучается в 1, 2 семестрах 1 курса. Дисциплину реализует Научно-образовательный институт физических исследований и технологий. Дисциплина состоит из 4 разделов и 52 тем и направлена на изучение логически обоснованной физической картины мира, массива теоретических знаний с природными объектами и аналогами, базовых понятий современной физики.

Целью освоения дисциплины является формирование у студентов системы научных знаний и общепрофессиональных навыков, необходимых для решения конкретных физических и математических задач, выявления физических оснований математических моделей и др., создание благоприятных условий для саморазвития студентов, формирование умения выделять главное при построении математических моделей.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Физика» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
УК-1	критический анализ и синтез информации, применять	УК-1.1 Анализирует задачу, выделяя ее базовые составляющие; УК-1.2 Осуществляет поиск информации для решения поставленной задачи по различным типам запросов; УК-1.3 Предлагает варианты решения задачи, анализирует возможные последствия их использования;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Физика» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Физика».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
УК-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач		Высшая математика; Математические методы в инженерных приложениях; Философия;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

^{** -} элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Физика» составляет «6» зачетных единиц.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dura vinofino y noficer a	DCETO av		Семестр(-ы)	
Вид учебной работы	ВСЕГО, ак	.4.	1	2
Контактная работа, ак.ч.	105		54	51
Лекции (ЛК)	35		18	17
Лабораторные работы (ЛР)	35		18	17
Практические/семинарские занятия (СЗ)	35		18	17
Самостоятельная работа обучающихся, ак.ч.	66		36	30
Контроль (экзамен/зачет с оценкой), ак.ч.	45		18	27
Общая трудоемкость дисциплины	ак.ч.	216	108	108
	зач.ед.	6	3	3

Общая трудоемкость дисциплины «Физика» составляет «6» зачетных единиц.

Таблица 4.2. Виды учебной работы по периодам освоения образовательной программы высшего образования для заочной формы обучения.

D	DCETO		Семестр(-ы)	
Вид учебной работы	ВСЕГО, ак.	ч.	2	3
Контактная работа, ак.ч.	24		12	12
Лекции (ЛК)	8		4	4
Лабораторные работы (ЛР)	8		4	4
Практические/семинарские занятия (СЗ)	8		4	4
Самостоятельная работа обучающихся, ак.ч.	179		92	87
Контроль (экзамен/зачет с оценкой), ак.ч.	13		4	9
Общая трудоемкость дисциплины	ак.ч.	216	108	108
	зач.ед.	6	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

	•	ие дисциплины (модуля) по видам учебной работы			
Номер раздела	Наименование раздела дисциплины		Содержание раздела (темы)		
			Кинематика материальной точки. Механическое	работы*	
			движение. Материальная точка. Система		
			отсчета. Прямолинейное и криволинейное,	ЛК, ЛР,	
		1.1	равномерное и переменное движение. Скорость,	C3	
			перемещение, путь, траектория, ускорение.		
			Нормальное и касательное ускорение.		
			Динамика материальной точки и системы		
ì			материальных точек. Первый закон Ньютона.		
ì			Инерциальные системы отсчета. Масса и		
			импульс. Второй закон Ньютона в		
			дифференциальной форме. Сила как	пи пр	
		1.2	производная импульса. Третий закон Ньютона.	ЛК, ЛР, СЗ	
			Система материальных точек; центр масс и	CS	
ì			импульс системы. Теорема о движении центра		
			масс. Закон сохранения импульса системы		
			материальных точек. Уравнение Мещерского.		
			Формула Циолковского		
			Работа и энергия. Работа постоянной и		
			переменной силы. Мощность. Потенциальные и		
			непотенциальные силы. Потенциальная и		
		1.3	кинетическая энергия. Закон сохранения	ЛК, ЛР,	
		1.5	механической энергии. Трение скольжения.	C3	
			Диссипация механической энергии.		
			Центральный абсолютно упругий и неупругий		
			удары.		
			Вращательное движение тела. Поступательное и		
			вращательное движение тела. Угловое		
Раздел 1	Механика		перемещение, угловая скорость, угловое		
, ,			ускорение. Вращательный момент. Момент	шс пр	
		1.4	инерции тела. Теорема Гюйгенса- Штейнера.	ЛК, ЛР,	
			Момент импульса вращающегося тела. Второй	C3	
			закон динамики для вращательного движения		
			тела. Работа и мощность при вращательном		
			движении. Закон сохранения момента импульса. Гироскопы и их применение.		
			Гравитационные силы. Силы инерции. Закон		
			всемирного тяготения. Гравитационное поле.		
			Сила тяжести и вес тела. Невесомость. Работа		
			силы тяжести при перемещении тела в		
			гравитационном поле Земли. Законы Кеплера.	ЛК, ЛР,	
		1.5	Первая и вторая космические скорости.	C3	
			Неинерциальные системы отсчета.		
			Центробежная и кориолисова сила инерции во		
			вращающейся системе. Движение тел вблизи		
			поверхности Земли.		
			Основы специальной теории относительности.		
		1 6	Постулаты специальной теории	ЛК, ЛР,	
		1.6	относительности. Преобразования Лоренца.	С3	
			Относительность длин и интервалов времени.		
			Упругие свойства сплошных сред. Колебания		
			частицы. Виды упругих деформаций:		
			растяжение, сдвиг, кручение, объемное	ЛК, ЛР,	
		1.7	расширение и сжатие. Закон Гука для упругих	C3	
			деформаций. Модуль Юнга. Модуль сдвига.	C3	
			Коэффициент Пуассона. Простое гармоническое		
			колебание. Энергия колеблющейся частицы.		

Номер раздела	Наименование раздела дисциплины		Содержание раздела (темы)	Вид учебной работы*
			Маятники. Свободные затухающие колебания. Вынужденные колебания. Резонанс.	
		1.8	Механические волны. Элементы акустики. Бегущая волна. Поперечные и продольные волны. Одномерное волновое уравнение. Продольные волны в твердом теле. Волны в газах и жидкостях. Поток энергии бегущей волны. Интерференция волн. Стоячие волны. Ударные волны. Звук. Скорость звука. Зависимость скорости звука от упругих свойств среды. Высота, тембр, интенсивность и	ЛК, ЛР, СЗ
		2.1	громкость звука. Ультразвук и его применение. Кинетическая теория газов. Идеальный газ. Уравнение состояния идеального газа. Основное уравнение кинетической теории газов. Средняя квадратичная, средняя и наиболее вероятная скорости молекул. Максвелловское распределение молекул газа по скоростям. Барометрическая формула. Распределение Больцмана.	ЛК, ЛР, СЗ
		2.2	Законы термодинамики. Термодинамические системы. Работа при изменении объёма газа. Первое начало термодинамики. Внутренняя энергия идеального газа. Теплоемкость при постоянном объеме и при постоянном давлении. Равновесные и неравновесные процессы. Второе начало термодинамики.	ЛК, ЛР, СЗ
Раздел 2	Молекулярная физика	2.3	Методы термодинамики. Понятие энтропии идеального газа. Связь энтропии с термодинамической вероятностью состояния системы. Возрастание энтропии в изолированной системе. Третье начало термодинамики. Адиабатический процесс. Уравнение Пуассона. Работа, теплота и изменение внутренней энергии при изопроцессах в идеальном газе. Число степеней свободы молекулы. Цикл Карно. КПД цикла Карно.	ЛК, ЛР, СЗ
		2.4	Явления переноса. Теплопроводность, закон Фурье, коэффициент теплопроводности. Диффузия, закон Фика, коэффициент диффузии. Связь теплопроводности и диффузии идеального газа.	ЛК, ЛР, СЗ
		2.5	Реальные газы. Потенциал парного межмолекулярного взаимодействия Ленарда-Джонса. Уравнение Ван-дер-Ваальса. Критическая точка. Приведенная форма уравнения Ван-дер-Ваальса. Закон соответственных состояний. Эффект Джоуля-Томсона. Точка инверсии. Сжижение газов.	ЛК, ЛР, СЗ
		2.6	Твердые тела. Кристаллические и аморфные тела. Типы кристаллических структур: ионная, атомная, металлическая и молекулярная. Типы связей в кристалле. Теплоемкость твердых тел. Закон Дюлонга и Пти. Точечные дефекты в кристаллах: вакансии, примеси внедрения, примеси замещения. Краевые и винтовые дислокации. Жидкости. Характеристика жидкого состояния.	ЛК, ЛР, СЗ

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
			Поверхностный слой жидкости. Поверхностное натяжение. Давление кривой поверхности жидкости. Формула Лапласа. Капиллярные явления. Смачивание твердых поверхностей. Поверхностно-активные вещества, их свойства и применение.	СЗ
		2.8	Фазовые переходы. Термодинамические фазы. Условие равновесия фаз. Фазовые переходы первого рода. Линия равновесия фаз (бинодаль). Диаграмма состояний однокомпонентного вещества. Тройная точка. Критическая точка. Уравнение Клапейрона-Клаузиуса. Зависимость давления насыщенного пара от температуры. Термодинамическая устойчивость фазы. Спинодаль. Метастабильные фазы. Переход жидкость-пар по уравнению Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса. Взрывное кипение.	ЛК, ЛР, СЗ
		3.1	Электростатическое поле. Электрическое, магнитное и электромагнитное поле. Заряды. Элементарный заряд. Закон сохранения заряда. Закон Кулона. Электростатическое поле. Напряжённость и силовые линии поля. Потенциальный характер электростатического поля. Потенциал. Соотношение между напряжённостью и потенциалом. Проводники в электрическом поле. Индукция электрического поля. Поток вектора индукции. Теорема Остроградского- Гаусса. Связь между поверхностной плотностью заряда и напряжённостью поля вблизи поверхности заряженного проводника.	ЛК, ЛР, СЗ
Раздел 3	Электричество и магнетизм	3.2	Поле заряженных проводников и конденсаторов. Электроёмкость проводников и конденсаторов. Поле заряженной пластины. Поле плоского конденсатора. Энергия электрического поля. Плотность энергии. Поле сферического конденсатора. Поле уединённой сферы. Зависимость между поверхностной плотностью заряда и кривизной поверхности заряженного проводника. Поле цилиндрического конденсатора.	ЛК, ЛР, СЗ
		3.3	Диэлектрики. Диэлектрическая проницаемость диэлектриков. Электрический момент диполя. Поляризация диэлектриков. Вектор поляризации. Напряжённость электрического поля в диэлектрике. Полярные и неполярные диэлектрики. Зависимость диэлектрической проницаемости диэлектрика от температуры. Сегнетоэлектрики и их свойства. Прямой и обратный пьезоэффект. Применение пьезоэлектриков.	лк, лр, С3
		3.4	Законы постоянного тока. Сила и плотность тока. Законы Ома и Джоуля-Ленца; дифференциальная форма этих законов. Электродвижущая сила источника. Закон Ома для цепи, содержащей ЭДС. Правила Кирхгофа для разветвлённых электрических цепей.	ЛК, ЛР, СЗ
		3.5	Электронные свойства металлов. Металлы, диэлектрики, полупроводники. Вырожденный	ЛК, ЛР, СЗ

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
			электронный газ в металле. Энергия Ферми. Электропроводность металлов. Зависимость электрического сопротивления металлов от температуры, примесей и дефектов кристаллической структуры. Сверхпроводимость металлов. Высокотемпературная сверхпроводимость.	
		3.6	Контактные явления в металлах. Работа выхода электрона из металла. Контактная разность потенциалов. Термопара. Термоэлектродвижущая сила. Измерение температуры термопарой. Эффект Пельтье и его применение.	ЛК, ЛР, СЗ
		3.7	Электрический ток в вакууме. Термоэлектронная эмиссия. Вакуумный диод. Вольт-амперная характеристика диода. Роль объёмного заряда. Формула Ричардсона. Вакуумный триод. Характеристики и параметры триода.	ЛК, ЛР, СЗ
		3.8	Полупроводники. Полупроводниковые материалы. Ширина запрещённой зоны полупроводника. Собственная электропроводность полупроводника. Проводимость, обусловленная примесями. Донорные и акцепторные полупроводники, п-р переход двух полупроводников. Полупроводниковые диоды.	ЛК, ЛР, СЗ
		3.9	Электрический ток в газе. Ионизация газа. Несамостоятельный газовый разряд. Электропроводность газа. Виды самостоятельных разрядов: тлеющий, искровой, коронный, дуговой. Плазма и её основные параметры.	ЛК, ЛР, СЗ
		3.10	Магнитное поле. Магнитное поле. Сила Лоренца. Индукция и напряжённость магнитного поля. Закон Био-Савара-Лапласа. Поле кругового и прямолинейного токов. Магнитное поле тороида и соленоида. Вихревой характер магнитного поля. Закон Ампера. Сила взаимодействия длинных параллельных проводников с током. Магнитный момент контура с током. Действие магнитного поля на контур с током. Магнитный поток. Циркуляция вектора индукции магнитного поля.	лк, лр, СЗ
		3.11	Электромагнитная индукция. Причины возникновения э.д.с. индукции и индукционного тока. Закон Фарадея и правило Ленца. ЭДС индукции при движении проводника и вращении контура в однородном магнитном поле. Индуктивность контура. Э.д.с. самоиндукции. Самоиндукция при замыкании и размыкании цепей постоянного тока. Энергия магнитного поля, плотность энергии. Взаимная индукция двух контуров. Вихревые токи. Скин-эффект.	ЛК, ЛР, СЗ
		3.12	Магнитные свойства вещества. Намагничивание вещества. Вектор намагниченности. Элементарные токи Ампера. Диамагнетики и парамагнетики. Зависимость намагниченности магнетиков от напряжённости магнитного поля	ЛК, ЛР, СЗ

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*	
			и температуры. Свойства ферромагнетиков. Точка Кюри. Магнитный гистерезис.		
		3.13	Заряженные частицы и плазма в магнитном и электрическом поле. Сила Лоренца. Движение заряженной частицы в магнитном поле. Ускорители заряженных частиц. Массспектроскопия. Электроннолучевая трубка. Плазма в магнитном поле. Ток в плазме. Пинчэффект.	ЛК, ЛР, СЗ	
		3.14	Электромагнитные колебания. Колебательный контур. Свободные колебания в контуре. Вынужденные колебания. Добротность контура. Активное сопротивление, ёмкость и индуктивность в цепи переменного тока. Переменный электрический ток. Резонанс токов. Резонанс напряжений. Импеданс. Мощность при переменном токе.	ЛК, ЛР, СЗ	
		3.15	Электромагнитные волны. Электромагнитные волны. Уравнение простейшей электромагнитной волны в обычной и в дифференциальной формах. Скорость распространения электромагнитных волн. Энергия электромагнитной волны. Вектор Умова-Пойнтинга.	ЛК, ЛР, СЗ	
		3.16	Уравнения Максвелла. Ток смещения. Первое уравнение Максвелла. Вихревое электрическое поле. Второе уравнение Максвелла. Система уравнений Максвелла в интегральной и дифференциальной форме.	ЛК, ЛР, СЗ	
		4.1	Законы геометрической оптики: Снеллиуса, отражения света, прямолинейного распространения света, независимости световых лучей.	ЛК, ЛР, СЗ	
		4.2	Характеристики тонких линз: фокусное расстояние, оптическая сила. Формула тонкой линзы. Правила построения изображений в линзе.	ЛК, ЛР, СЗ	
		4.3	Фотометрические величины и их единицы: световой поток, сила света, освещённость, яркость, светимость. Соотношение Ламберта. Спектральная чувствительность человеческого глаза. Увеличение оптических приборов: лупы, линзы, микроскопа, телескопа.	ЛК, ЛР, СЗ	
Раздел 4	Оптика, атомная физика, элементы ядерной физики	4.4	Понятие электромагнитной волны. Плоские и сферические волны. Монохроматичность. Шкала электромагнитных волн. Уравнение электромагнитной волны для сферической и плоской волн. Скорость распространения электромагнитных волн в среде. Понятие фазовой и групповой скорости. Вектор Умова-Пойнтинга. Объёмная плотность энергии электромагнитных волн.	лк, лр, С3	
		4.5	Интерференция. Условия наблюдения интерференции. Понятие когерентности. Оптическая разность хода. Условия максимума и минимума интенсивности. Способы наблюдения интерференции: метод Юнга, заркало Френеля, бипризма Френеля. Интерференция на плоскопараллельных	ЛК, ЛР, СЗ	

Номер раздела	Наименование раздела дисциплины		Содержание раздела (темы)	Вид учебной работы*
			пластинках и пластинках переменной толщины. Кольца Ньютона. Интерферометр Майкельсона. Эталон Фабри-Перо.	
		4.6	Дифракция света. Дифракция Френеля. Дифракция Фраунгофера. Принцип Гюйгенса. Принцип Гюйгенса. Принцип Гюйгенса. Френеля. Метод зон Френеля. Метод ¶графического сложения амплитуд. Дифракция Френеля на простейших преградах: на круглом отверстии, на круглом диске, на прямолинейном краю полуплоскости. Спираль Корню. Дифракция Фраунгофера на щели. Дифракционная решётка. Критерий разрешимости Рэлея. Дифракция рентгеновских лучей.	ЛК, ЛР, СЗ
		4.7	Голография. Метод получения и восстановления изображения.	ЛК, ЛР, СЗ
		4.8	Дисперсия. Закон Бугера. Поглощение волн в жидкостях и газах. Рассеяние света. Закон Рэлея.	ЛК, ЛР, СЗ
		4.9	Поляризация. Виды поляризации.	ЛК, ЛР, СЗ
		4.10	Абсолютно чёрное тело. Серое тело. Закон смещения Вина.	ЛК, ЛР, СЗ
		4.11	Фотоэффект. Уравнение Эйнштейна для фотоэффекта.	ЛК, ЛР, СЗ
		4.12	Эффект Комптона. Корпускулярно-волновой дуализм. Волны де Бройля.	ЛК, ЛР, СЗ
		4.13	Принцип неопределённости Гейзенберга.	ЛК, ЛР, СЗ
		4.14	Постулаты Бора. Квантовые переходы. Серии Лаймана, Бальмера, Пашена, Брэккета, Пфунда.	ЛК, ЛР, СЗ
		4.15	Понятие спина.	ЛК, ЛР, СЗ
		4.16	Принцип Паули. Фермионы и бозоны.	ЛК, ЛР, СЗ
		4.17	Статистика Ферми-Дирака и Бозе-Эйнштейна.	ЛК, ЛР, СЗ
		4.18	Строение атомного ядра. Масса и энергия связи атомного ядра. Дефект масс атомного ядра.	ЛК, ЛР, СЗ
		4.19	Радиоактивность. Радиоактивный распад. Ядерные силы. Механизм действия ядерных сил. Ядерные реакции.	ЛК, ЛР, СЗ
		4.20	Принцип работы лазера.	ЛК, ЛР, СЗ

^{* -} заполняется только по $\underline{\mathbf{OYHOЙ}}$ форме обучения: JK – лекции; JP – лабораторные работы; C3 – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий	Ауд. 408: Комплект

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
	лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	специализированной мебели; возможность подключения переносного проектора
Лаборатория	Аудитория для проведения лабораторных работ, индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и оборудованием.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	Ауд. 408: Комплект специализированной мебели; возможность подключения переносного проектора
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	Ауд. 408: Комплект специализированной мебели; возможность подключения переносного проектора

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Савельев Игорь Владимирович. Курс общей физики: Учебное пособие для втузов: В 5-ти кн. Кн. 1: Механика. М.: Астрель: АСТ, 2002, 2003, 2004, 2006.
- 2. Савельев Игорь Владимирович. Курс общей физик: Молекулярная физика и термодинамика: В 5- ти кн.: Учебное пособие для втузов. Кн. 2. М.: Астрель: АСТ, 2001, 2003. 2002.
- 3. Савельев Игорь Владимирович. Курс общей физик: Молекулярная физика и термодинамика: В 5- ти кн.: Учебное пособие для втузов. Кн. 3. М.: Астрель: АСТ, 2001, 2003. 2002.
- 4. Савельев Игорь Владимирович. Курс общей физики: Учебное пособие для втузов: В 5-ти кн. Кн. 4: Волны. Оптика. М.: Астрель: АСТ, 2002
- 5. Савельев Игорь Владимирович. Курс общей физики: Учебное пособие для втузов: В 5-ти кн. Кн.5. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц. М.: Астрель: АСТ, 2002.
- 6. Иродов Игорь Евгеньевич. Задачи по общей физике: Учебное пособие для вузов. 8-е изд.; Электронные текстовые данные. М.: БИНОМ. Лаборатория знаний, 2010. Дополнительная литература:
 - 1. Савельев Игорь Владимирович. Курс общей физики: Учебное пособие: В 3-х т.

- Т. 1: Механика. Молекулярная физика. 2-е изд., перераб. М.: Наука, 1982.
 - 2. Савельев Игорь Владимирович. Курс общей физики: Учебное пособие: В 3-х т.
- Т. 2: Электричество и магнетизм. Волны. Оптика. 2-е изд., перераб. М.: Наука, 1982.
 - 3. Савельев Игорь Владимирович. Курс общей физики: Учебное пособие: В 3-х т.
- Т. 3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц. 3е изд., исправ. М.: Наука, 1987

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Физика».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Физика» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

		Кравченко Николай
		•
доцент ИФИТ		Юрьевич
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП:		
		Кравченко Николай
Заведующий кафедрой		Юрьевич
Должность БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:		
		Алленов Дмитрий

Подпись

РАЗРАБОТЧИК:

Доцент

Должность, БУП

Геннадьевич

Фамилия И.О.