Документ подписан простой электронной подписью	
Информация о владельц ederal State Autor	nomous Educational Institution of Higher Education
ФИО: Ястребов Олег Александрович	
Должность: Perpeoples' FRIENDSHI	UNIVERSITY OF RUSSIA NAMED AFTER PATRICE
Дата подписания: 24.09.2024 10:29:17	LUMUMBA
Уникальный программный ключ:	RUDN University
ca953a0120d891083f939673078ef1a989dae18a	KUDN University

Academy of Engineering

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Modern issues of power engineering science and manufacture

course title

Recommended by the Didactic Council for the Education Field of:

13.04.03. POWER ENGINEERING

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Mechanical Engineering

higher education programme profile/specialisation title

1. The COURSE GOAL

The purpose of teaching the discipline "Modern problems of science and production in energy engineering" is to study the current state and problems of improving energy technology, its design and operation features.

Objectives of the discipline:

- to introduce students to the main types of modern electric power generation plants;
- give an idea of the physical processes in the main generating facilities;

• to teach how to make and justify specific technical decisions in the subsequent design of generating facilities.

2. REQUIREMENTS FOR LEARNING OUTCOMES:

The following competences are formed in the study process.

Table 2.1. List of competences that students acquire during the course

r	able 2.1. List of competences that statents deq	0
Compet	Competence descriptor	Competence formation indicators
ence		
code		
GC-3	Ability to organize and manage the work of the	GC-3.1. Demonstrates an understanding of the
	team, developing a team strategy to achieve the	principles of teamwork;
	set goal.	GC-3.2. Plans and adjusts the work of the
		team taking into account the interests,
		behaviors and opinions of its members;
		GC-3.3 Resolves conflicts and contradictions in
		business communication based on consideration
		of the interests of all parties.
GPC-2	Ability to apply modern research methods, evaluate	GPC-2.1. Selects the necessary research
	and present the results of the work performed.	method to solve the task;
		GPC-2.2. Analyzes the results obtained;
		GPC-2.3. Represents the results of the work
		performed.

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The subject refers to the variable component of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other disciplines and internships that contribute to the achievement of the expected learning outcomes as results of the subject mastery

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the course results

Com- petence code	Competence descriptor	Previous courses/modules, internships*	Subsequent courses/modules, internships*
GC-1	Ability to carry out a critical analysis of problematic situations based on a systematic approach, develop a strategy for action.	Modern energy technology Modern computer communication services Special chapters of the theory of heat engines	Undergraduate Training Final State Examination
	Ability determine and implement the priorities of his own activities and ways to improve them based on self-assessment	Modern energy technology Modern computer communication services	Undergraduate Training Final State Examination

	Special chapters of	
	the theory of heat	
	engines	

* - in accordance with the matrix of competencies and the SUP EP VO

4. WORKLOAD OF THE COURSE AND FORMS OF STUDY WORK

General workload of the course 4 credits, 144

hours. Table 4.1. Form of study work of EP HE

Type of ac	ademic	Total	Semester(s)			
activit	ies	academic hours	3			
Contact acader	nic hours	78	78			
including:						
Lectures (LC)		17	17			
Lab works (LW	V)	17	17			
Seminars (wor	kshops /	17	17			
tutorials) (S)						
Self-studies		66	66			
academic hour	S					
Evaluation and	l	27	27			
assessment aca	ıdemic					
hours						
Course work / project,		0	0			
credits						
Course	academic	144	144			
workload	hours					
	credits	4	4			

5.CONTENT OF THE COURSE

Table 5.1. Content of the course

The title of the section of the discipline	Content of the section (topic)	
Section 1 The current	The main generating capacities of Russia and their technical level.	LC,
state of the global and	The distribution of generating capacities, their age, and the ability to	SM,
Russian thermal power	provide guaranteed power supply. Graphs of the load of power	AW
industry and its	systems and problems of their coverage. Prospects for the	
prospects.	development of global and Russian energy. Prospects for the	
	development of gas turbine and combined cycle gas technologies.	
Section 2 Problems of	Modern internal combustion engines: their design, parameters, and	LC,
increasing the efficiency	applications. Examples of the best foreign ICE. The main problems	SM,
and reliability of	of creating competitive internal combustion engines in Russia.	AW
internal combustion	Scientific problems of engine system development, gorenje process	
engines and combined	improvement, reduction of toxic emissions. Maintenance problems.	
installations.	Scientific and practical problems of reliability of internal combustion	
	engines.	
Section 3	Organization and promotion of energy saving. Economic incentives.	LC,
Energy saving.	Energy saving in Russia and abroad. Energy planning, energy audit.	SM,
		AW
Section 4	General information about the current problems of science and	LC,
Prospects for the	technology of power engineering in the field of training. The	SM,
development of	evelopment of achieved level of perfection and unsolved problems of the power	
	equipment of the hydroelectric power plant and the working process	

hydropower.	of the hydro turbine. Energy pumps – problems and ways to solve	
5 1	them. Modern scientific and applied problems in the field of	
	volumetric hydraulic machines, hydro-, pneumatic systems and	
	aggregates.	
Section 5	Structural materials in heat and hydropower. Structural materials	LC,
Promising materials in	used in the engine industry. Requirements for structural materials in	SM,
heat and hydropower	the heat and hydropower industry. Promising materials in the engine	AW
and engine building.	industry.	
Section 6	Liquid hydrocarbon fuels. Analysis of the quality indicators of liquid	LC,
Modern liquid fuels for	hydrocarbon fuels in order to influence the working process of	SM,
internal combustion	internal combustion engines. Advantages of light fuel injection.	AW
engines.		
Section 7	Types of alternative fuels and their physico-chemical properties.	LC,
Alternative fuels.	Promising fuels for internal combustion engines. Analysis of the use	SM,
	of alternative fuels in the internal combustion engine.	AW
Section 8	Physico-chemical properties of alternative fuels. Changing the	LC,
The quality of	parameters of the internal combustion engine workflow when using	SM,
alternative fuels.	alternative fuels. Mixed fuels, their characteristics and application	AW
	prospects.	

* - LC - lecture, LR - laboratory work, SM - seminars; AW - Autonomous work

6. INTERNSHIP EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Technical Support Requirements

A type of aclassroom	Technical Support Requirements	Special equipment, software
For lectures	An auditorium for lecture-type classes, equipped with a set of specialized furniture; board (screen) and technical means of multi- media presentations	Technical means: projector Epson EH- TW5300 (LCD, 1080р 1920 x 1080, 2200Lm, 35000:1, 2 x HDMI, MHL, экран Draper Bar-onet NTSC (3:4) 244/96(8) 152*203 MW
For seminars	Auditorium for seminar-type classes, group and individual consultations, current control and intermediate certification, equipped with a set of specialized furniture and technical means of multimedia presentations	Computer class; technical equipment: personal computers, projection screen, multimedia projector, NEC NP-V302XG, Internet access. Software: Microsoft products (OS, office suite, incl. MS Office/Office 365, Teams, Skype),
For autonomous work	Auditorium for independent work of students (can be used for seminars and consultations), equipped with a set of specialized furniture and computers with access to the EIOS	Computer class; technical equipment: personal computers, projection screen, multimedia pro- jector, NEC NP-V302XG, Internet access. Software: Microsoft products (OS, office suite, including. MS Office/Office 365, Teams, Skype)

7.RESOURCES RECOMMENDED FOR THE COURSE:

Main literature:

- 1. Основы современной энергетики, т.2, Современная теплоэнергетика, под ред. Трухния А.Д., 2008.
- 2. Паровые и газовые турбины для электростанций: учебник для ВУЗов. Под ред. А.Г. Костюка. М.: Издательский дом МЭИ, 2008.
- 3. Лойцянский Л.Г. Механика жидкости и газа. –М.: Наука, 1978.
- 4. Алексеев А.А. и др. Теория управления. –СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 1999.
- 5. Ковалев Н.Н., Квятковский В.С. Гидротурбиностроение в СССР. –М.-Л.:

Госэнергоиздат, 1957.

- 6. Ломакин А.А. Центробежные и осевые насосы. –М.-Л.: Машиностроение, 1966.
- 7. Башта Т.М. Объемные насосы и гидравлические двигатели гидросистем. –М.: Машиностроение, 1974.
- 8. Фомичев В.М. Проектирование электрогидравлических усилителей следящих приводов: Изд-во МГТУ, 2009.
- Доверман Г.И., Шелыгин Б.Л., Мошкарин А.В. и др. Расчёт котельных агрегатов с использованием современных программных продуктов / ГОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина». – Иваново, 2007.
- 10. Тепловой расчёт котлов (Нормативный метод) 2-е изд. С.-Пб.: НПО ЦКТИ, 1998.
- 11. Тепловой расчёт котельных агрегатов (Нормативный метод) / Под ред. Н.В. Кузнецова. М.: Энергия, 1973.

Additional readings:

- 1. Теплотехнический справочник /под ред. В.А. Григорьева. Т.3. «Тепловые и атомные электростанции», раздел 5. Насосы и газодувные машины. М., 2002.
- 2. Тепловые и атомные электрические станции (справочник), т. 3 / Под. ред. А.В.Клименко и В.М.Зорина. М.: Энергоатомиздат, 2001; гл. 1.
- 3. Физический энциклопедический словарь. –М.: Советская Энциклопедия, т.I, II, 1960-1966.
- 4. Попов Е.П. Теория линейных систем автоматического регулирования и управления. –Учебн. пособие для вузов. –М.: Наука, 1989. – 304 с.
- 5. Попов Е.П. Теория нелинейных систем автоматического регулирования и управления. –Учебн. пособие для вузов. –М.: Наука, 1988.
- 6. Климонтович Ю.Л. Турбулентное движение и структура хаоса. –М.: Наука, 1990.

Фишер И.З. Статическая теория жидкостей. –М.: Гос. изд-во физ-мат.лит., 1961.

Electronic library systems:

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) <u>http://lib.rudn.ru/MegaPro/Web</u>

- EL "University Library Online" http://www.biblioclub.ru
- EL "Yurayt" http://www.biblio-online.ru
- EL "Student Consultant" www.studentlibrary.ru
- EL "Lan" http://e.lanbook.com/
- EL "Trinity Bridge"
- 2. Databases and search engines:
 - electronic foundation of legal and normative-technical documentation http://docs.cntd.ru/
 - Yandex search engine <u>https:// www .yandex.ru/</u>
 - Google search engine https://www.google.ru/
 - Scopus abstract database http://www.elsevierscience.ru/products/scopus/

The training toolkit and guidelines for a student:

1. Collection of lectures on the course <u>Modern issues of power engineering science and</u> <u>manufacture</u>.

* The training toolkit and guidelines for the course are placed on the internship page in the university telecommunication training and information system under the set procedure.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS INTERNSHIP RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course <u>Modern issues of power engineering science and manufacture</u> results are specified in the Appendix to the internship syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local

normative act of RUDN University (regulations / order).

DEVELOPERS:		
Associate Professor in the Department of Energy Engineering position, educational department	signature	Oshchepkov P.P.
HEAD OF EDUCATIONAL DEPAR	TMENT:	
Head of the Department of		Yu.A. Radin
Energy Engineering		
position, educational department	signature	name and surname
HEAD OF		
HIGHER EDUCATION PROGRAM	ME:	
Head of the Department of		Yu.A. Radin
Energy Engineering		
position, educational department	signature	name and surname

6