Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чтосударственное автономное образовательное учреждение высшего образования Должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 22.05.2025 09:39:43

Уникальный программный ключ:

Институт экологии

са<u>953а0120d891083f939673078ef1a989dae18а</u> (наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ТЕХНОЛОГИИ ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

01.04.02 ПРИКЛАДНАЯ МАТЕМАТИКА И ИНФОРМАТИКА

(код и наименование направления подготовки/специальности)

Освоение реализации дисциплины ведется рамках профессиональной образовательной программы высшего образования (ОП BO):

МОДЕЛИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ ПРОЦЕССОВ В ЭКОЛОГИИ и экономике

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Технологии вычислительного эксперимента» входит в программу магистратуры «Моделирование и прогнозирование процессов в экологии и экономике» по направлению 01.04.02 «Прикладная математика и информатика» и изучается в 4 семестре 2 курса. Дисциплину реализует Департамент экологической безопасности и менеджмента качества продукции. Дисциплина состоит из 6 разделов и 12 тем и направлена на изучение методов и инструментов плагнирования и реализации вычислительного эксперимента.

Целью освоения дисциплины является овладение в комплексе научно-методическим аппаратом моделирования сложных систем и планирования вычислительного эксперимента, методами постановки задач системного исследования, формализации исходной информации, разработки имитационных моделей с использованием существующих аппаратно-программных средств, подготовки и обработки исходных данных для системного моделирования, планирования вычислительного эксперимента.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Технологии вычислительного эксперимента» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ПК-1	Способен проводить научные исследования и получать новые научные и прикладные результаты самостоятельно и в составе научного коллектива	ПК-1.1 Выбирает, анализирует и сравнивает математические методы для проведения научных исследований в области математического моделирования процессов в экологии и экономике; ПК-1.2 Умеет исследовать работоспособность, адекватность и точность математических моделей с практической точки зрения, проводит анализ результатов моделирования, принимает решение на основе полученных результатов; ПК-1.3 Проводит исследование и развивает существующие модели, методы и алгоритмы решения поставленных задач;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Технологии вычислительного эксперимента» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Технологии вычислительного эксперимента».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
	Способен проводить	Численные методы решения	
ПК-1	научные исследования и	задач математического	
	получать новые научные и	моделирования;	

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
	прикладные результаты самостоятельно и в составе	История математики и методология науки;	
	научного коллектива	Математические модели экономических процессов**; Математические модели динамических процессов биосферы **;	

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Технологии вычислительного эксперимента» составляет «3» зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dur virobuoŭ nobori i	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			4	
Контактная работа, ак.ч.	32		32	
Лекции (ЛК)	16		16	
Лабораторные работы (ЛР)	16		16	
Практические/семинарские занятия (С3)	0		0	
Самостоятельная работа обучающихся, ак.ч.	76		76	
Контроль (экзамен/зачет с оценкой), ак.ч.	0		0	
Общая трудоемкость дисциплины	ак.ч.	108	108	
	зач.ед.	3	3	

Общая трудоемкость дисциплины «Технологии вычислительного эксперимента» составляет «3» зачетные единицы. Таблица 4.2. Виды учебной работы по периодам освоения образовательной программы высшего образования для очно-заочной формы обучения.

Вид учебной работы		ВСЕГО, ак.ч.		Семестр(-ы)	
				4	
Контактная работа, ак.ч.		34		34	
Лекции (ЛК)		17		17	
Лабораторные работы (ЛР)		17		17	
Практические/семинарские занятия (СЗ)		0		0	
Самостоятельная работа обучающихся, ак.ч.		56		56	
Контроль (экзамен/зачет с оценкой), ак.ч.		18		18	
Общая трудоемкость дисциплины		ак.ч.	108	108	
		зач.ед.	3	3	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	наименование раздела Дисциплины	Содержание раздела (темы)		Вид учебной работы*
Раздел 1	Основные понятия вычислительного эксперимента. Этапы	1.1	Вычислительный эксперимент. Цель и задачи вычислительного эксперимента. Схема вычислительного эксперимента	ЛК, СЗ
Раздел 1	проведения вычислительного эксперимента	1.2	Этапы проведения вычислительного эксперимента. Прямая и обратная задачи вычислительного эксперимента.	ЛК, СЗ
Раздел 2	Разработка математической модели для вычислительного эксперимента	2.1	Основные понятия статистического анализа. Определение типа математической модели. Формализация, калибровка, валидация модели	ЛК, ЛР, СЗ
		2.2	Анализ чувствительности и оптимизация модели. Итоговое тестирование.	ЛК, ЛР, СЗ
Doorog 2	Общая технология проведения	3.1	Оценка математической модели. Выбор программных средств перевода математической модели в имитационную	ЛК, ЛР, СЗ
Раздел 3	вычислительного эксперимента	3.2	Технология проведение вычислительного эксперимента с использованием имитационной модели	ЛК, ЛР, СЗ
	Мололи организации	4.1	Математические основы обработки результатов вычислительного эксперимента	ЛК, СЗ
Раздел 4	Модели организации комплексных исследований	4.2	Использование ПО для ввода, хранения и предварительной обработки информации для решения задач профессиональной сферы	ЛК, ЛР
Раздел 5	Инструментальные средства	5.1	Правила работы в ППП (пакеты прикладных программ) для определения неизвестных параметров по выборке.	ЛК, ЛР, СЗ
	вычислительного эксперимента	5.2	Создание средствами ППП моделей для компьютерной обработки результатов	ЛК, ЛР
Раздел 6	Проведение вычислительного эксперимента на основе нейронных сетей	6.1	Особенности проведения вычислительного эксперимента с использованием систем искусственного интеллекта.	ЛК, ЛР, СЗ
		6.2	Технология проведения вычислительного эксперимента с использованием нейронных сетей.	ЛК, ЛР, СЗ

^{*} - заполняется только по $\underline{\mathbf{OYHO\check{u}}}$ форме обучения: JK – лекции; JP – лабораторные работы; C3 – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Компьютерный	Компьютерный класс для проведения	

класс	занятий, групповых и индивидуальных	
	консультаций, текущего контроля и	
	промежуточной аттестации, оснащенная	
	персональными компьютерами (в	
	количестве [Параметр] шт.), доской	
	(экраном) и техническими средствами	
	мультимедиа презентаций.	
Для		
самостоятельной		
работы		

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Берикашвили, В. Ш. Статистическая обработка данных, планирование эксперимента и случайные процессы: учебное пособие для вузов / В. Ш. Берикашвили, С. П. Оськин. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2024. 164 с. (Высшее образование). ISBN 978-5-534-09216-5.
- 2. Боев, В. Д. Имитационное моделирование систем : учебное пособие для вузов / В. Д. Боев. Москва : Издательство Юрайт, 2024. 253 с. (Высшее образование). ISBN 978-5-534-04734-9.

Дополнительная литература:

1. В. М. Конюхов, А. Н. Чекалин, И. В. Конюхов ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ И МЕТОД ПЛАНИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ ЭКСПЕРИМЕНТОВ. 2016

https://kpfu.ru/portal/docs/F562714371/ChIS_MET_PLAN_BE_VMK.pdf

- 2. Методы обработки экспериментальных данных. Сборник учебнометодических материалов для магистров направления подготовки 03.04.01 «Прикладные математика и физика». / сост. И.Б. Копылова, Благовещенск: Изд-во АмГУ, 2017 Ресурсы информационно-телекоммуникационной сети «Интернет»:
- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

1. Курс лекций по дисциплине «Технологии вычислительного эксперимента».

* - все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС</u>!

РАЗРАБОТЧИК:

		Белова Ирина
Доцент		Константиновна
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП:		
		Савенкова Елена
Директор лепартамента		Викторовна
Должность БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:		
		Ледащева Татьяна
Доцент		Николаевна
Должность, БУП	Подпись	Фамилия И.О.