ca953a0120d891083f939673078ef1a989dae18a

Academy of Engineering

LUMUMBA

RUDN University

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Nanotechnology in Civil Engineering

course title

Recommended by the Didactic Council for the Education Field of: 08.04.01 Civil Engineering

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Civil Engineering and Built Environment

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course <u>Nanotechnology in Civil Engineering</u> is to gain knowledge and skills to show the relationship between the shape of the structure, its strength and ergonomics, which characterizes the stages of competence formation and ensures the achievement of the planned results of the development of the educational program.

2. REQUIREMENTS FOR LEARNING OUTCOMES

The course <u>Nanotechnology in Civil Engineering</u> implementation is aimed at the development of the following competences (competences in part):

Table 2.1. List of competences that students acquire during the course <u>«Nanotechnology in</u> <i>Civil Engineering»

Compet ence code	Competence descriptor	Competence formation indicators (within this course)
	Conducting scientific research in the field of construction	 PC-1.1 Able to carry out planning, preparation for research; PC-1.2 Able to carry out, control, receive research results; PC-1.3 Able to analyze and process research results; PC-1.4 Knows how to draw up, coordinate, and present the results of completed research
	Development of project products based on the results of engineering and technical design for urban development activities	PC-2.1 Capable of performing engineering and technical design and developing design products for building structures, grounds and foundations

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course <u>Nanotechnology in Civil Engineering</u> refers to the *elective component* of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other disciplines (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course Nanotechnology in Civil Engineering.

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the internship results.

Comp etence code	Competence descriptor	Previous courses / modules, internships	Subsequent courses / modules, internships
PC-1	Conducting scientific research in the field of construction		Sustainability in Civil Engineering; Geometric Shaping and Analysis of Shells; Independent Research Work (obtaining basic skills of research work); Independent Research Work; Pre-Graduation Practice
PC-2	Development of project products based on the results of engineering and technical design for urban development		Life Cycle Economics of Buildings; Structural Design in Reinforced Concrete: Special Topics;

activities	Structural Dynamics;
	Structural Design in Steel:
	Special Topics;
	Modelling of Construction
	Processes;
	Applications of Finite
	Element Method for Civil
	Engineering problems;
	Sustainability in Civil
	Engineering;
	Optimization Methods in
	Civil Engineering;
	Structural Stability;
	Geometric Shaping and
	Analysis of Shells;
	Engineering Systems of
	Buildings;
	Desin Practice;
	Technological Practice;
	Pre-Graduation Practice

4. COURSE WORKLOAD

The total workload of the course <u>Nanotechnology in Civil Engineering</u> is <u>4</u> credits. *Table 4.1. Academic activities types by periods of the higher education programme*

Type of academic		Total	Semester(s)			
activiti	es	academic hours	1			
Contact academ	nic hours	36	36			
including:						
Lectures (LC)		18	18			
Lab works (LW)		0	0			
Seminars (workshops /		18	18			
tutorials) (S)						
Self-studies		81	81			
academic hours						
Evaluation and		27	27			
assessment academic						
hours						
Course work / project,						
credits						
Course	academi	144	144			
workload	c hours					
	credits	4	4			

5. COURSE CONTENTS

Modules	Contents (topics)	Academic activities types *
Section 1.	Topic 1.1 Composition of composite materials.	LC, S
General approach to	Matrix, different types of matrix. Reinforcement of	
composite materials	composite materials, types of reinforcement	

Modules	Contents (topics)	Academic activities types *
Section 2.	Topic 2.1 Classification by the type of reinforcing	LC, S
Classification of	filler, by the type of matrix, by designation,	
composites	depending on the type and location of fibers	
	Topic 2.2 Isotropic and anisotropic composite	
	materials. Their advantages and disadvantages	
Section 3.	Topic 3.1 Mechanical and physical properties,	LC, S
Fiberglass composites	methods of production.	
	Topic 3.2 Application of fiberglass in civil	
	engineering. Spatial structures made of fiberglass.	
Section 4.	Topic 4.1 Strength criteria for isotropic and	LC, S
Methods of strength	anisotropic composite materials. Mieses-Hill	
calculations for	criterion,	
structures made of	Topic 4.2 Zakharov–Malmeister criterion.	
composites	Golenblat– Kopnov criterion. Their graphical	
	interpretation and range of application. The	
	modified strength criterion.	
Section 5.	Topic 5.1 Types of nano-particles. Carbon	LC, S
Nanotechnologies for	nanoparticles: fullerenes, nano-tubes, astralens and	
production of advanced	the other ones.	
composite materials	Topic 5.2 Concrete modified with nanoparticles.	
	Influence of nano-modification on physical and	
	mechanical properties of concrete.	

* - to be filled in only for full -time training: LC - lectures; LW - lab work; S - seminars.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements			
Type of academic activities	Classroom equipment	Specialized educational / laboratory equipment, software and materials for course study (if necessary)	
Lectures	An auditorium for conducting lectures, equipped with a set of specialized furniture; a blackboard (screen) and technical means for multi-media presentations.		
Seminars	A classroom for conducting seminars, group and individual consultations, current and midterm assessment; equipped with a set of specialised furniture and technical means for multimedia presentations.		
Computer Labs	Not required.		
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialised furniture and computers with access to the electronic information and educational environment		

7. RESOURCES RECOMMENDED FOR INTERNSHIP

Main readings:

1. Bafekrpour E. Advanced Composite Materials: Properties and Applications[Электронный ресурс]2023.ISBN9783110574432URL:https://doi.org/10.1515/9783110574432ISBN9783110574432ISBN

Additional readings:

1. Maurizio Dapor, Simone Taioli, Nicola M. Pugno. New Frontiers in

Multiscale Modelling of Advanced Materials 2016. 1 c. ISBN 9782889197552 URL:

http://journal.frontiers in.org/research topic/3121/new-frontiers-inmultiscale-modelling-of-advanced-materials

2. Kasperkiewicz J. Micro An Intermediate Step to Nano Level Analysis in Concrete Like Composites // Nanotechnology in Construction. 2004.

ISBN 978-0-85404-623-2 DOI: http://dx.doi.org/10.1039/9781847551528-00063

3. Computational and Experimental Mechanics of Advanced Materials

: Contributed volume. - : Springer Vi-enna, 2009. - (CISM International Centre for Mechanical Sciences ; 514). - ISBN 978-3-211-99685-0.

http://lib.rudn.ru/MegaPro/UserEntry?Action=Rudn_FindDoc&id=326990&idb=0

4. G.M.L. Gladwell. Lecture Notes on Composite Materials: Contributed volume / G.M.L. Gladwell, B. Rene, S. Tomasz. - : Springer Netherlands, 2009. - (Solid Mechanics and Its Applications ; 154). - ISBN 978-1-4020-8772-1. http://lib.rudn.ru/MegaPro/UserEntry?Action=Rudn_FindDoc&id=327148&idb=0 *Internet sources:*

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) <u>http://lib.rudn.ru/MegaPro/Web</u>

- EL "University Library Online" http://www.biblioclub.ru

- EL "Yurayt" http://www.biblio-online.ru

- EL "Student Consultant" <u>www.studentlibrary.ru</u>

- EL "Lan" http://e.lanbook.com/

- EL "Trinity Bridge"

2. Databases and search engines:

- electronic foundation of legal and normative-technical documentation http://docs.cntd.ru/

- Yandex search engine <u>https:// www .yandex.ru/</u>

- Google search engine <u>https://www.google.ru/</u>

- Scopus abstract database http://www.elsevierscience.ru/products/scopus/

The training toolkit and guidelines for a student:

1. Collection of lectures on the course Nanotechnology in Civil Engineering.

* The training toolkit and guidelines for the course are placed on the internship page in the university telecommunication training and information system under the set procedure..

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS INTERNSHIP RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course <u>Nanotechnology in Civil Engineering</u> results are specified in the Appendix to the internship syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local

normative act of RUDN University (regulations / order).

DEVELOPERS:

Ass. Professor of the Department of			
Construction Technology and			
Structural Materials		S. L. Shambina	
position, educational department	signature	name and surname	
position, educational department	signature	name and surname	
HEAD OF EDUCATIONAL DEPART	MENT:		
Head of the Department of			
Construction Technology and		A.V. Solovyeva	
Structural Materials		71. V. 5010Vyeva	
position, educational department	signature	name and surname	
HEAD OF			
HIGHER EDUCATION PROGRAMM	IE:		
Associate Professor of the Department			
of Construction Technology and			
Structural Materials		M.I. Rynkovskaya	
position, educational department	signature	name and surname	