Lumumba **RUDN University Science faculty**

educational division -faculty/institute/academy

COURSE DESCRIPTION

The study of disciplines is implemented within the professional education programme of higher education:

«Bioenergies and Biorefineries»

higher education programme profile/specialisation title

implemented in the field of training/specialty:

04.04.01 «Chemistry»

field of studies / speciality code and title

2024

Course Title	Actual problems of modern chemistry
Course Workload	11 Credits /396 academic hours
	Course contents
Course Module Title	Brief Description of the Module Content
Module 1. Introduction.	Topic 1.1 The genesis of problematics in organic chemistry. Various search strategies for biologically active organic compounds: targeted synthesis and creation of molecular diversity.
Module 2. Modern methods of isolation of organic compounds	Topic2.1Classical methods of isolation of organic compounds (filtration, distillation, recrystallization, extraction, chromatography).Topic2.2Solid-phase synthesis. The use of ionic liquids. Perfluorinated systems.
Module 3. Modern approaches to conducting chemical reactions.	Topic 3.1 Solid-phase synthesis. The use of ionic liquids. Perfluorinated systems. The use of microwave irradiation and ultrasound. Flow synthesis. Reagents based on hypervalent iodine.
Module 4. The use of protective groups in organic synthesis.	Topic 4.1 Basic principles for the introduction and removal of protective groups. Hydroxyl protection. Amino group protection. Protection of the carboxyl group.
Module 5. Modern approaches to the creation of new synthetic methods	Topic 5.1 Basic principles of green chemistry, atom- economy, industrial chemistry.
Module 6. Introduction to metal complex catalysis	Topic 6.1 Fundamentals of complex formation. Catalytic hydrogenation methods. Catalytic methods of oxidation. Cross-coupling reactions. Metal-catalyzed reactions of creating C-C and C-heteroatom bonds. C-H Activation.
Module 7. Introduction to organocatalysis.	Topic 7.1 Basic principles of organocatalysis. Reactions catalyzed by Lewis organic bases; Lewis acids; Brönsted bases; Brönsted acids.
Module 8. Cycloaddition reactions in organic synthesis.	Topic 8.1 The most important classes of cycloaddition in organic chemistry. [2+4] Cycloaddition. [2+3] Cycloaddition. Basic principles of click chemistry.

Course Title	Russian language in professional activity
Course Workload	6 Credits /216 academic hours
Course contents	
Course Module Title	Brief Description of the Module Content
Module 1. Introductory Phonetic and Grammar Course	Topic 1.1. Pronunciation and spelling
	Topic 1.2. Introductory Listening and Speaking course
	Topic 1.3. Formation of plural nouns.
	Expression of request
Module 2. Elementary level	Topic 2.1. Gender of nouns. Possessive pronouns.
	Topic 2.2. The expression of time in a simple sentence
	Topic 2.3. The concept of the Russian verb. The creative case
	of nouns.
	Topic 2.4 The creative case of nouns. The verb «XOTETb».

	Topic 2.5. A model of past tense formation from verbs with
	constant stress based on
	Topic 2.6. A model of the formation of the past tense from
	verbs with variable stress.
	Topic 2.7. Constructions «нужно» + infinitive, «можно» +
	infinitive, «Что нужно (можно)» + infinitive
	Topic 2.8. Complex future tense of verbs.
	Topic 2.9. The verb «учиться» in the present, past and future
	tenses.
	Topic 2.10. The verb «говорить» in the present, past and
	future tenses. Imperative.
	Topic 2.11. The verb «учить» in the present, past and future
	tenses.
	Topic 2.12. Expression of the absence of the subject (there is
	no subject). The etiquette of a telephone conversation.
	Topic 2.13. Constructions «У меня есть (был, будет)» и «У
	меня нет (не было, не будет)»
	Topic 2.14. Construction «Мне нравится». Comparison of
	typical contexts of the use of the verbs «любить» and
	«нравиться».
	Topic 2.15. Prepositional case of the place.
	Topic 2.16. The expression of time in a simple sentence.
	Prepositional verbs.
	Topic 2.17. The etiquette of a telephone conversation.
	Formation of a simple comparative degree of adverbs
	Topic 2.18. The creative case in the meaning of the
	compatibility of action Topic 2.19. A general idea of the verbs of movement.
	Accusative case to indicate the direction of movement.
	Topic 2.20. The verbs of the group «идти» and «ходить» in
	the future and past tense.
	Topic 3.1. Systematization of cases. Prepositional case and
	its meanings. Verbs that require the prepositional case.
	The genitive case and its meanings. Genitive case with
	prepositions для, без, от, около, из, у, с, вокруг, мимо.
	Types of the verb. The use of HCB and CB in the past tense,
	in the infinitive and imperative.
	Accusative case and its meanings. Transitive verbs.
	Accusative case of the direction. Verbs of movement with the
Module 3. Basic level.	prefixes y-, в- and вы
	The dative case and its meanings. Verbs that require the
	dative case. The dative case in impersonal constructions.
	Predicative adverbs denoting the feelings and state of a
	person.
	The creative case and its meanings. The creative case in the
	meaning of the instrument of action. The creative case with
	prepositions c, рядом c, над, под, перед, между. Verbs that
	require the creative case.

Course Title	Foreign language in professional activity	
Course Workload, ЗЕ/ак.ч.	6 Credits /216 academic hours	
Course contents		
Course Module Title	Brief Description of the Module Content	
Module 1. Academic skills in Master's research activities.	Topic 1.1. Development of speaking, writing, listening, purposeful reading skills within the following topics: Education and Studying, Science and its Commercialisation, Job, Career and Employee's skills, Managing scientific and business communication, Studying in Russia and Abroad, Academic and Educational Mobility. Topic 1.2. Formation of basic competencies of effective communication within the framework of the stated issues of academic and business discourses.	
Module 2. Practical course of professionally-oriented translation	Topic 2.1. The specifics of professionally-oriented translation. Topic 2.2. Terminological realities of professionally-oriented translation. Topic 2.3. The subject field of professionally-oriented translation (on the example of the direction of training of students)	
Module 3. Preparation for writing and defending the WRC in English	 Topic 3.1. Requirements for the structure, content and language of the WRC. Stylistic and punctuation design of the WRC. Topic 3.2. Requirements for the design of the bibliography. Topic 3.3. Requirements for the preparation and presentation of a scientific presentation. 	

Course Title	Bioenergy
Course Workload	4 Credits / 144 academic hours
Course contents	
Course Module Title	Brief Description of the Module Content
Module 1. Biofuels	Topic 1.1 An introduction, current status, merits and demerits, characterization techniques of biomass, comparisons between fossil fuels and biofuels. Energy demands (quiz), energy facts and prospects for the future.
Module 2. Types of biofuels and classification. Liquid biofuels (first generation)	 Topic 2.1 Biodiesel. Preparation and types (first vs second generation). Processes. Prospects and perspectives. The food vs fuel and related issues. Topic 2.2 Bioethanol. Preparation and types (first vs second generation). The food vs fuel issue and the blend wall. Prospects and perspectives.
Module 3. Liquid biofuels (Second generation): constraints, impacts and benefits of lignocellulose conversion pathways	Topic3.1Biodieselvsgreendiesel.Processesandtechnologies.Prospects and perspectives.Topic3.2Bioethanol:lignocellulosicbiomass, syngasfermentationtobioethanol.Preparationandprocesses.Prospects and perspectives.Topic3.3Otherbiofuels (synthetic fuels).BTL.Pyrolysisoils.SunFuel.Othersynthetic fuels.Preparationandprocesses.Prospects and perspectives.Vertices.Vertices.Vertices.
Module 4. Gaseous biofuels.	Topic 4.1 Biogas: a promising clean energy technology.

	Preparation and processes. Purification. Examples. Prospects
	and perspectives.
	Topic 4.2 Hydrogen: technologies for renewable hydrogen
	production, hydrogen production from electrolysis, technico-
	economic evaluation of hydrogen energy by flow sheeting
	simulation and economic evaluation, assessment of combined
	renewable sources and hydrogen storage for residential
	applications
Module 5. Solid Fuels	Topic 5.1 Solid Fuels. Pellets. Preparation and processes.
	Heat and power applications. Prospects and perspectives.
Module 6. Life cycle assessment	Topic 6.1 Life cycle assessment of biofuels. Systems analysis
of biofuels	and possibilities. Prospects and perspectives.

Course Title	Modern organic synthesis and pharmacology
Course Workload	4 Credits / 144 academic hours
	Course contents
Course Module Title	Brief Description of the Module Content
Module 1. Pharmacology	Topic 1.1 Introduction to Pharmacology
	Topic 1.2 Physicochemical properties of Active Pharmaceutical Ingredients (APIs). Ionization of pharma compounds. Acidic APIs. Basic APIs. Isoelectric point. pKa and pKb. Partition coefficient.
	Topic 1.3 Pharmacokinetics and pharmacodynamics: Concepts and examples. Pharmacokinetics: Absorption and distribution of APIs. Bioavailability. Pharmacodynamics. Pharmacological receptors. Agonist and antagonist molecules. APIs classification: structural specific and inespecific APIs
	Topic 1.4 Structural characteristics of APIs and Pharmacological action. Stereoisomery. Optic, geometric and conformational isomers and pharmacological action. Chemical Isostery. Concept. Bioisosterism. Classic and non classic bio-isosterism
	Topic 1.5 Rational design of APIs. Pharmacological design. Pharmacomodulation. QSAR methods for pharma design. Hammet equation. Taft equation. Hansch method. Method of Free-Wilson. QSAR-3D methodologies. Examples.
	Topic 1.6 Metabolic pathways of APIs. Definition of toxicology. Basic principles of toxicology. Synergism, potentiation and antagonism. Dose-response relationships. Xenobiotics and endogenic substances. Examples. Pharma metabolism. Metabolic reactions (Phase I, Phase II). Metabolic routes. Examples for common pharmaceuticals.
Module 2. Modern Organic synthesis	Topic 2.1 Green metrics and Green Chemistry in Pharma Introduction and applications of fundamental green metrics into modern synthesis; solvent selections and applications of sustainable solvent systems in modern approaches to organic synthesis and catalysis. Atom economy. E-factor. Functional Oriented Synthesis (FOS). Topic 2.2 Real examples of application of Green Chemistry principles L in Pharma synthesis:
	Topic 2.2 Real examples of application of Green Chemistry principles I in Pharma synthesis: Synthesis of Sildenafil (Viagra®, Pfizer), Synthesis of

Talampanel (LY300164, Lilly Research Laboratories, Green
Chemistry Award 1999), Synthesis of Ganciclovir
(Cytovene®, Roche, Green Chemistry Award 2000).
Topic 2.3 Real examples of application of Green Chemistry
principles II in pharma synthesis:
Synthesis of Sertraline (Zoloft®, Pfizer, Green Chemistry
Award 2002), Synthesis of Aprepitant (Emend®, Merck &
Co., Green Chemistry Award 2005); Synthesis of Sitagliptin
(Juvenia [™] , Merck & Co. Green Chemistry Award 2006).
Topic 2.4 Flow approaches to sustainable pharmaceuticals
synthesis

Course Title	Alternative/new tools for organic synthesis
Course Workload	4 Credits / 144 academic hours
	Course contents
Course Module Title	Brief Description of the Module Content
Module 1. Microwave	Topic 1.1 Introduction
irradiation and inductive heating	Topic 1.2 Theoretical description of the activation mode
	Topic 1.3 Description of the equipment
	Topic 1.4 Examples of application in organic chemistry and catalysis: N-heterocycles (pyrrole, indole, pyridine, pyrrolidine), cross coupling reactions, click chemistry, synthesis of nano-materials and nano-composite, oligomerization of glycerol, microwave pyrolysis, decarboxylative reaction, synthesis of Iloperidone, synthesis of Olanzapine, synthesis of HMF/furfural, hydrogenation of HMF/furfural, synthesis of solketal, glycerol esterification
Module 2. Photochemistry	Topic 2.1 Introduction
	Topic 2.2 Theoretical description of the activation mode
	Topic 2.3 Description of the equipment
Module 3. Sonochemistry	Topic 2.4 Real examples of application in organic chemistry and catalysis: Synthesis of Ibuprofen, synthesis of HMF/furfural, photocatalytic oxidation of HMF/furfural Topic 3.1 Introduction
	Topic 3.2 Theoretical description of the activation mode
	Topic 3.3 Description of the equipment
Module 4. Electrochemistry	Topic 3.4 Real examples of application in organic chemistryand catalysis: Pinacol cross coupling, synthesis ofHMF/furfural, synthesis of heterogeneous catalystTopic 4.1 Introduction
	Topic 4.2 Theoretical description of the activation mode
	Topic 4.3 Description of the equipment
	Topic 4.4 Real examples of application in organic chemistry and catalysis: oxidation of HMF/furfural, reduction of HMF/furfural, synthesis of diesel
Module 5. Mechanochemistry	Topic 5.1 Introduction
	Topic 5.2 Theoretical description of the activation mode
	Topic 5.3 Description of the equipment

Module 6. Plasma	Topic 5.4 Real examples of application in organic chemistry and catalysis: synthesis of HMF/furfural, synthesis of 6- hydroxy-2H-pyran-3(6H)-ones from furfuryl alcohol, synthesis of glycerol carbonateTopic 6.1 Introduction
	Topic 6.2 Theoretical description of the activation mode
	Topic 6.3 Description of the equipment
	Topic 6.4 Real examples of application in organic chemistry and catalysis: oxidation of alcane.
Module 7. Flow chemistry	Topic 7.1 Introduction
	Topic 7.2 Description and influence of the parameters: residence time, reactor design, source, temperature, pressure
	Topic 7.3 Description of the equipment
	Topic 7.4 Real examples of application in organic chemistry and catalysis: Synthesis of Diphenhydramine hydrochloride, Synthesis of Lidocaine hydrochloride, Synthesis of Diazepam, Synthesis of Fluoxetine hydrochloride, hydrogenation of HMF/furfural.
Module 8. Flow chemistry	Topic 8.1 Introduction
combining microwave, induction, photochemistry,	Topic 8.2 Theoretical description of the activation mode
sonochemistry, electrochemistry, mechanochemistry, plasma	Topic 8.3 Description of the equipment
	Topic 8.4 Real examples of application in organic chemistry and catalysis: (microwave) synthesis of HMF/furfural, (induction) synthesis of Iloperidone, synthesis of Olanzapine, (photochemistry) oxidation of HMF/furfural, (sonochemistry) Pinacol cross coupling, (electrochemistry) oxidation of HMF/furfural, reduction of HMF/furfural, oxidation of glycerol, (mechanochemistry) synthesis of biodiesel, (plasma) oxidation of alkane.

Course Title	Bioproducts and Biorefineries
Course Workload	5 Credits / 180 academic hours
	Course contents
Course Module Title	Brief Description of the Module Content
Module 1. Introduction to	Topic 1.1 Introduction to Bioproducts and Biorefineries.
Bioproducts and Biorefineries	Types of Bioproducts. Biofuels Concept. Biorefineries:
	concept and types. Examples. Platform molecules: concept
	and examples. Bioproducts from biomass/waste: different
	platforms
Module 2. Bioproducts from	Topic 2.1 Oil platform. Types of bioproducts. Oleaginous
biomass/waste	feeds (fatty acids). Chemistry of fatty acids and
	transformations. Examples. Glycerol as platform molecule:
	chemistries and transformations. Examples (e.g.
	epichlorohydrin, Solvay). Bioproducts: chemicals, surfactants
	and others
	Topic 2.2 Carbohydrate platform. Carboxylic acids (succinic,
	fumaric, itaconic, levulinic acid and related platform
	molecules). Chemistries and transformations. Examples.
	Sorbitol as a platform molecule.
	Topic 2.3 Ethanol platform. Chemicals from ethanol.

	Transformations. Examples
	Topic 2.4 Syngas platform. Chemicals from syngas.
	Transformations. Examples
Module 3. Extraction of	Topic 3.1 Extraction of bioproducts from biomass/waste.
bioproducts from biomass/waste	Examples. Specialty Chemicals. Pharmaceuticals. Essential oils. WEEEs valorization.
Module 4. Materials from	Topic 4.1 Biopolymers (Starch, chitosan/chitin, PLA, PHAs,
biomass/waste	etc.). Extraction from biomass.
	Modification/functionalization. Examples. Applications
	Topic 4.2 Biomaterials from biomass/waste. Biomaterials for
	construction. Biomaterials in the automotive sector.
	Biomaterials for packaging. Biomaterials for miscellaneous
	applications
Module 5. Biorefineries	Topic 5.1 Biorefinery concept. Introduction. Types of
	biorefineries. Type I, Type II and Type III. Key examples.
	Topic 5.2 Techno-economic assessment applied to two key
	examples. LCA, concept and examples
	Topic 5.3 Safety in biorefineries. Sustainable biorefining.
	Process Safety issues and process intensification. Examples.
Module 6. Conclusions and	Topic 6.1 Conclusions and prospects. Overview of the course.
prospects	Lessons learnt. Perspectives and future of biomass/waste for
	useful products.

Course Title	Advanced Organic Synthesis
Course Workload	5 Credits / 180 academic hours
	Course contents
Course Module Title	Brief Description of the Module Content
Module 1. General principle of restrosynthesis, stereochemistry and thermochemistry	Topic 1.1 General principles of retrosynthesis, stereochemistry and thermochemistry. Introduction, examples and possibilities.
Module 2. Reactions of Carbon Nucleophiles with Carbonyl Compounds	Topic 2.1 Reactions of Carbon Nucleophiles with Carbonyl Compounds, applications in synthesis. Strategies for controlling the reactivity and the stereochemistry.
Module 3. Functional Group Interconversion by Substitution, Including Protection and Deprotection	Topic 3.1 Definition of protecting group and their classification. Strategies for the introduction and removal of protecting groups, Examples and applications. Definition of orthogonality with protecting groups.
Module4.ElectrophilicAdditionstoCarbon-CarbonMultiple Bonds	Topic 4.1 Reactivity of unsaturated compounds with electrophiles. Definition of electrophile. Reactivity, regiochemistry and stereochemistry of electrophilic additions.
Module 5. Organometallic Compounds of Group I and II Metals	Topic 5.1 Organolithium and organomagnesium in synthesis. Structure and reactivity relationship. Applications in modern synthesis. Tactics for generation and use.
Module 6. Reactions Involving Transition Metals	Topic 6.1 Synthetic strategies involving transition metals. Cross coupling reactions mediated by transition metals.
Module 7. Carbon-Carbon Bond-Forming Methodologies.	Topic 7.1 Basic knowledge in the formation of C-C bonds. Main routes and strategy for C-C bond formation. Examples

Carbocations, Carbenes, and	Topic 8.1 Introduction to the structure and reactivity of reactive intermediates: carbocations, carbenes and radicals. Applications in synthesis.
Module 9. Organocatalysis	Topic 9.1 Principles of organocatalysis, strategies for planning an organocatalytic reaction, types of organocatalytic reactions.
Module 10. Photocatalysis	Topic 10.1 Basic principles of photocatalysis, simple examples of photocatalytic reactions
Module 11. Multistep Synthesis	Topic 11.1 Planning a Multistep Synthesis, strategies for multistep synthesis

Course Title	Catalyst (nanomaterials) design and applications
Course Workload	3 Credits / 108 academic hours
Course contents	
Course Module Title	Brief Description of the Module Content
Module 1. Introduction to	Topic 1.1 Introduction to synthesis and design of
synthesis and design of	nanomaterials. Types of nanomaterials. Nanoparticles.
nanomaterials	Nanosclusters. Supported systems. Types of support.
	Examples. Methodologies to synthesize nanomaterials.
Module 2. Design of	Topic 2.1 Microwave synthesized catalysts. Basic Principles.
catalysts/nanomaterials.	Methodology. Examples and applications
Conventional vs alternative	Topic 2.2 Mechanochemically synthesized catalysts. Basic
	Principles. Methodology. Examples and applications
	Topic 2.3 Photochemically synthesized catalysts. Basic
	Principles. Methodology. Examples and applications
	Topic 2.4 Sonochemical synthesized catalysts. Basic
	Principles. Methodology. Examples and applications
	Topic 2.5 Electrochemically synthesized catalysts. Basic
	Principles. Methodology. Examples and applications
	Topic 2.6 Continuous flow synthesized catalysts. Basic
	Principles. Methodology. Examples and applications
	Topic 2.7 Other catalytic systems (including combinations).
	Basic Principles and various combinations. Methodology.
	Examples and applications
Module 3. Catalyst deactivation	Topic 3.1 Catalyst deactivation phenomena. Types and
phenomena. Types and	measures to control them. Catalyst Characterization (SEM,
measures to control them.	XRD, TEM, XPS, UV-Vis, etc.). Deactivation phenomena.
	Poisoning. Fouling/coking. Sintering. Phases
	transformations/chemical reactions. Leaching.
	Attrition/Crushing. Explanations and examples. How to detect
Module 4. Conclusions and	deactivation (key characterization)
	Topic 4.1 Conclusions and prospects. Catalyst design
prospects	perspectives and examples.

Course Title	Catalysis: from Basic principles to applications.
	Homogeneous, Heterogeneous, PhotoCatalysis, Biocatalysis,
	Electrocatalysis
Course Workload	3 Credits / 108 academic hours

Course contents	
Course Module Title	Brief Description of the Module Content
Module 1. Introduction to	Topic 1.1 Introduction to Catalysis. Catalysis as a pillar of our
Catalysis	future society. Types of catalysis. Examples.
Module 2. Homogeneous	Topic 2.1 Homogeneous catalysis. Basics, principles and
catalysis. Basics, principles and	examples. Catalyst design. Applications.
examples	
Module 3. Heterogeneous	Topic 3.1 Heterogeneous catalysis. Basics, principles and
catalysis. Basics, principles and	examples. Catalyst design. Applications.
examples	
Module 4. Photocatalysis.	Topic 4.1 Photocatalysis. Basics, principles and examples.
Basics, principles and examples	Photocatalyst design. Applications.
Module 5. Biocatalysis. Basics,	Topic 5.1 Biocatalysis. Basics, principles and examples.
principles and examples	Biocatalyst design. Applications.
Module 6. Electrocatalysis.	Topic 6.1 Electrocatalysis. Basics, principle and examples.
Basics, principle and examples	Electrocatalyst design. Applications.
Module 7. Differences and	Topic 7.1 Differences and similarities. A comparison between
similarities. A comparison	Catalysis types. Pros and cons. Possibilities and combinations
between Catalysis types	of catalytic processes (e.g. chemo-biocatalysis). Perspectives
	and combination with modern tools (e.g. flow chemistry)
Module 8. Conclusions and	Topic 8.1 Conclusions and prospects
prospects	

Course Title	Experimental lab 1	
Course Workload	3 Credits / 108academic hours	
	Course contents	
Course Module Title	Brief Description of the Module Content	
Module 1. Alkylation of	Topic 1.1 Alkylation of aromatics (batch vs microwave vs	
aromatics (batch vs microwave	flow). Explanation. Lab experiments.	
vs flow)		
Module 2. Catalyst synthesis	Topic 2.1 Catalyst synthesis (supported metal nanoparticles),	
(supported metal nanoparticles),	batch vs microwave vs flow. Explanation. Lab experiments.	
batch vs microwave vs flow		
Module 3.	Topic 3.1 Esterification/etherification of glycerol (batch vs	
Esterification/etherification of	microwave vs flow). Explanation. Lab experiments.	
glycerol (batch vs microwave vs		
flow)		
Module 4. Dehydration of	Topic 4.1 Dehydration of xylose (batch vs microwave vs	
xylose (batch vs microwave vs	flow). Explanation. Lab experiments.	
flow		
Module 5. Synthesis of	Topic 5.1 Synthesis of biodiesel from WCO (batch vs	
biodiesel from WCO (batch vs	microwave vs flow). Explanation. Lab experiments.	
microwave vs flow)		

Course Title	Experimental lab 2: Biorefineries and Bioproducts	
Course Workload	4 Credits / 144 academic hours	
Course contents		
Course Module Title	Brief Description of the Module Content	
Module 1. Synthesis of	Topic 1.1 Synthesis of biodiesel. Explanation. Lab applied	

biodiesel	work
Module 2. Extraction of biochemicals from biomass/waste	Topic 2.1 Extraction of biochemicals from biomass/waste. Explanation. Lab applied work
Module 3. Synthesis of soap via saponification reaction	Topic 3.1 Synthesis of soap via saponification reaction. Explanation. Lab applied work
Module 4. Preparation of	Topic 4.1 Preparation of mesoporous starch from plain starch. Explanation. Lab applied work
mesoporous carbonaceous materials from starch	Topic 4.2. Preparation of mesoporous carbonaceous materials from mesoporous starch. Explanation. Lab applied work

Course Title	Experimental lab 3: Advanced Organic Synthesis
Course Workload	4 Credits / 144 academic hours
Course contents	
Course Module Title	Brief Description of the Module Content
Module 1. Monophasic	Topic 1.1 Monophasic reactions: liquid/liquid reaction.
reactions: liquid/liquid reaction	Examples. Preparation of an Ionic Liquid/Deep Eutectic solvent.
Module 2. Multiphasic	Topic 2.1 Multiphasic reactions: liquid/liquid reactions.
reactions: liquid/liquid reactions	Examples. Saponification reaction.
Module 3. Liquid/solid reactions	Topic 3.1 Liquid/solid reactions. Examples. In-situ preparation of copper azide
Module 4. Liquid/gas reactions	Topic 4.1 Liquid/gas reactions. Examples. Selective
and	hydrogenation of alkynes (e.g. phenylacetylene)
Module 5. Liquid/solid/gas	Topic 5.1 Liquid/solid/gas reactions. Examples.
reactions	Heterogeneously catalysed aerobic oxidation of alcohols
Module 6. Miscellaneous	Topic 6.1 Miscellaneous. Various additional reactions.
	Examples. Experimental lab on a key reaction (TBC)
Module 7. Presentation and	Presentation and Q&A session
Q&A session	

Course Title	Artificial intelligence and additive technologies in chemistry
Course Workload	2 Credits / 72 academic hours
Course contents	
Course Module Title	Brief Description of the Module Content
Module 1. Artificial Intelligence	Topic 1.1 Introduction to artificial intelligence for chemists
in Chemical Research	
	The concept of artificial intelligence (AI), the history of its
	development and its main applications in science and
	technology. Overview of the use of AI in chemistry to solve
	scientific and practical problems. Basic principles and
	approaches of AI, the difference between machine learning
	and deep learning.

Course Title	Artificial intelligence and additive technologies in chemistry
	Course contents
Course Module Title	Brief Description of the Module Content
Course Title Course Workload Course Module Title	Brief Description of the Module ContentTopic 1.2 Fundamentals of machine learning and neural networksKey aspects of machine learning and neural networksKey aspects of machine learning and neural networks. Types of learning (with teacher, without teacher, with reinforcement), algorithms and models, and their application in chemical research. Fundamentals of building, training and validating AI models.Topic 1.3 Applications of AI in organic synthesisAn overview of advanced developments in the use of AI in organic synthesis. Innovative application of machine
	Overview of materials used in additive manufacturing including plastics, metals, ceramics and composites. Suitability of materials for use in chemical research including chemical compatibility, heat resistance and mechanical properties.

Course Title	Artificial intelligence and additive technologies in chemistry
Course Workload	2 Credits / 72 academic hours
	Course contents
Course Module Title	Brief Description of the Module Content Topic 2.4 Applications of additive technologies in organic synthesis
	Specific applications of additive technologies in organic synthesis, including the fabrication of reactors, purification systems, and other laboratory devices. 3D printing applications that promote innovation in synthesis methodology, experiment optimization, and cost reduction.
	Topic 2.5 Development and integration of additive technologies into laboratory practice
	The process of developing and integrating additive technologies, device design, and tools for laboratory practice. Stages of design, material selection, printing and testing. Safety and cost effectiveness issues. Recommendations for getting started with additive technologies in the laboratory, including equipment selection.
Module 3. Artificial intelligence and additive technologies in	Topic 3.1 Fundamentals of integrating AI and additive technologies in chemistry
modern organic synthesis and biomass valorization processes	An overview of the opportunities offered by the combined use of AI and additive technologies in chemical synthesis. Basic principles and strategies for integrating these approaches to develop new chemical processes and devices. Examples of successful applications that demonstrate the potential of the combined approach. Topic 3.2 Development of customizable catalysts using AI and 3D printing
	Development of customizable catalysts using the analytical capabilities of AI to predict catalytic activity and selectivity, and the application of additive technologies to their physical creation. The benefits of creating catalysts specifically tailored to specific reactions and opportunities for innovation in synthetic chemistry. Process design of biomass valorization.
	Topic 3.3 Automation of organic synthesis using AI and additive technologies
	Using AI to automate organic synthesis processes, including reaction planning and control of reactors produced by

Course Title	Artificial intelligence and additive technologies in chemistry	
Course Workload	2 Credits / 72 academic hours	
Course contents		
Course Module Title	Brief Description of the Module Content	
	additive manufacturing methods. Strategies for integrating	
	these approaches to create flexible, highly efficient and	
	autonomous chemical production systems.	
	Topic 3.4 The future of synthesis: AI and additive	
	technologies as drivers of innovation and sustainability	
	A look at the future prospects for the use of AI and additive	
	technologies in organic synthesis. Potential directions for the	
	development of these technologies, including the creation of	
	smart materials, new approaches in process and device design,	
	and the impact on sustainability and green chemistry.	
	Challenges and opportunities for researchers and engineers in	
	synthetic chemistry, biomass conversion and sustainability.	

Course Title	Emerging contaminants: from fate to environmental remediation			
Course Workload	2 Credits /72 academic hours			
Course contents				
Course Module Title	Brief Description of the Module Content			
Module 1. Introduction to emerging contaminants. Properties and behaviors of emerging pollutants	Topic 1.1. Introduction to emerging contaminants. Properties and behaviors of emerging pollutants			
Module 2. Types of emerging contaminants	Topic 2.1. Organic pollutants (dyes, etc.)Topic 2.2. PharmaceuticalsTopic 2.3. PFASTopic 2.4. Micro and nanoplasticsTopic 2.5. NanomaterialsTopic 2.6. Others (miscellaneous)			
Module 3. Fate and mobility in the environment	Topic 3.1. Distribution and speciation (airborne, water, soil, etc.) Topic 3.2. Compounds and intermediates. Toxicity and environmental concerns Topic 3.3.			
Module 4. Environmental remediation. Degradation and removal	Topic 4.1. Physico-chemical degradation methodsTopic 4.2. Photocatalytic degradation method			

Course Title	The method of working with databases	
Course Workload	2 Credits /72 academic hours	
Course contents		
Course Module Title	Brief Description of the Module Content	
Module 1. "Classical" sources	Topic 1.1. Familiarization of students with the main sources	
of chemical information –	of chemical information search in the presented abstract	
abstract journals of Russian	journals, methods of searching for information of interest,	

Chemical, Chemical Abstracts, Beilshtein.	possibilities of presenting and searching for chemical
	information on the Internet.
	Topic 1.2. Features provided by the electronic version of
	Chemical Abstracts.
	Topic 1.3. Familiarization with the features of the
Densitem.	presentation and search of patent information.
	Topic 1.4. Familiarization with the specifics of the
	presentation and search of patent information.
	Topic 2.1. Familiarization of students with other electronic
Module 2. Search for the	free sources of scientific information.
necessary synthetic techniques	Topic 2.2. Working with the server http://www.orgsyn.org /
on the "Orgsyn" server	and the possibility of searching for methods of synthesis of
	compounds of interest.
	Topic 3.1. Working with full-text free electronic journals on
	the web, features of searching for articles of interest in this
Module 3. Free electronic	publication.
versions of organic chemistry	Topic 3.2. Working with full-text journals of the American
journals.	Chemical Society.
	Topic 3.3. Ways to search for information on the ACS
	website.
Module 4. Patent information	Topic 4.1. Search for patents on the website of the American
	Patent Office USPTO
	Topic 4.2. Search for patents on the website of the European
	Patent Office
Module 5. Chemical	Topic 5.1. Sci-Finder
information search capabilities	•
provided by paid services.	Topic 5.2. Reaxys
Module 6. Searching system	
SCOPUS.	Topic 6.1. Working in the search system SCOPUS.

Course Title			Artificial intelligence and additive technologies in chemistry
Course Wor	kload		2 Credits /72 academic hours
	Course contents		
Course Module Title		le	Brief Description of the Module Content
Module	1.	"Artificial	Topic 1.1 Introduction to artificial intelligence for chemists
Intelligence	in	Chemical	The concept of artificial intelligence (AI), the history of its
Research			development and its main applications in science and
			technology. Overview of the use of AI in chemistry to solve
			scientific and practical problems. Basic principles and
			approaches of AI, the difference between machine learning
			and deep learning.
			Topic 1.2 Fundamentals of machine learning and neural
			networks
			Key aspects of machine learning and neural networks. Types
			of learning (with teacher, without teacher, with
			reinforcement), algorithms and models, and their application
			in chemical research. Fundamentals of building, training and
			validating AI models.
			Topic 1.3 Applications of AI in organic synthesis
			An overview of advanced developments in the use of AI in

	organic synthesis. Innovative application of machine learning for reactivity prediction, optimization of reaction conditions
	and development of new reaction pathways. Practical examples from current research.
	Topic 1.4 Tools and databases for working with AI in
	chemistry Key tools, software and databases that are used to work with AI in chemistry. Issues of data availability, data preprocessing, and the importance of quality of data collection for successful AI applications. Examples of popular platforms and tools.
	Topic 2.1 Introduction to additive technologies for chemists An overview of additive technologies, their history and development, and basic principles and capabilities for chemical research. Advantages of additive technologies over traditional manufacturing methods, including their ability to rapidly iterate designs, customize, and create complex structures.
	Topic 2.2 Types of additive technologies and 3D printing Various additive manufacturing techniques and technologies such as stereolithography (SLA), selective laser sintering (SLS), layer-by-layer deposition method (FDM) and others. Their main characteristics, advantages and limitations for use in chemical research.
	Topic 2.3 Materials for additive manufacturing in chemistry
	Overview of materials used in additive manufacturing
	including plastics, metals, ceramics and composites.
Module 2. Fundamentals of	Suitability of materials for use in chemical research including chemical compatibility, heat resistance and mechanical
Module 2. Fundamentals of additive technologies for	properties.
chemical research	Topic 2.4 Applications of additive technologies in organic
	synthesis
	Specific applications of additive technologies in organic
	synthesis, including the fabrication of reactors, purification
	systems, and other laboratory devices. 3D printing
	applications that promote innovation in synthesis
	methodology, experiment optimization, and cost reduction.
	Topic 2.5 Development and integration of additive technologies into laboratory practice
	The process of developing and integrating additive technologies, device design, and tools for laboratory practice. Stages of design, material selection, printing and testing. Safety and cost effectiveness issues. Recommendations for getting started with additive technologies in the laboratory, including equipment selection.
Module 3. Artificial intelligence and additive technologies in modern organic synthesis and	Topic 3.1 Fundamentals of integrating AI and additive technologies in chemistry An overview of the opportunities offered by the combined use

biomass valorization processes	 of AI and additive technologies in chemical synthesis. Basic principles and strategies for integrating these approaches to develop new chemical processes and devices. Examples of successful applications that demonstrate the potential of the combined approach. Topic 3.2 Development of customizable catalysts using AI and 3D printing Development of customizable catalysts using the analytical capabilities of AI to predict catalytic activity and selectivity, and the application of additive technologies to their physical creation. The benefits of creating catalysts specifically tailored to specific reactions and opportunities for innovation in synthetic chemistry. Process design of biomass valorization. Topic 3.3 Automation of organic synthesis using AI and additive technologies Using AI to automate organic synthesis processes, including reaction planning and control of reactors produced by additive manufacturing methods. Strategies for integrating these approaches to create flexible, highly efficient and autonomous chemical production systems. Topic 3.4 The future of synthesis: AI and additive technologies as drivers of innovation and sustainability A look at the future prospects for the use of AI and additive technologies in organic synthesis. Potential directions for the development of these technologies, including the creation of smart materials, new approaches in process and device design, and the impact on sustainability and green chemistry.

HEAD OF HIGHER EDUCATION PROGRAMME: Dean of Faculty of Science,

Head of Organic Chemistry

Voskressensky L.G.

Department

position, department

signature

name and surname