Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чтосударственное автономное образовательное учреждение высшего образования Должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 21.05.2025 10:30:23

Уникальный программный ключ:

ca953a0120d891083f939673078 (наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

Инженерная академия

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ТЕХНОЛОГИЯ ПРОИЗВОДСТВА НАНОЭЛЕКТРОННОЙ БАЗЫ

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

28.03.02 НАНОИНЖЕНЕРИЯ

(код и наименование направления подготовки/специальности)

ЛИСШИПЛИНЫ велется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

НАНОТЕХНОЛОГИИ И НАНОМАТЕРИАЛЫ В ПРИБОРОСТРОЕНИИ

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Технология производства наноэлектронной базы» входит в программу бакалавриата «Нанотехнологии и наноматериалы в приборостроении» по направлению 28.03.02 «Наноинженерия» и изучается в 6 семестре 3 курса. Дисциплину реализует Базовая кафедра «Нанотехнологии и микросистемная техника». Дисциплина состоит из 2 разделов и 16 тем и направлена на изучение физических явлений, происходящих на различных этапах процесса напыления и роста наноэлектронной базы; существующих теорий роста наноэлектронной покрытий, рассмотрению современных методов роста и контроля качества наноэлектронной покрытий, их возможностей и ограничений; взаимосвязи физических свойств наноэлектронной покрытий со структурой и дефектами.

Целью освоения дисциплины является получение знаний, умений, навыков и опыта деятельности в области нанотехнологий и микросистемной техники, характеризующих этапы формирования компетенций и обеспечивающих достижение планируемых результатов освоения образовательной программы.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Технология производства наноэлектронной базы» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ПК-3	Способен организовывать и проводить экспериментальные исследования технологических модулей и процессов	ПК-3.1 Знает методики проведения экспериментальных исследований технологических модулей и процессов; ПК-3.2 Владеет методами экспериментальных исследований технологических модулей и процессов;
ПК-4	Способен участвовать в испытаниях инновационной продукции наноиндустрии на закрепленном испытательном оборудовании в соответствии с методикой испытаний	ПК-4.1 Знает методики испытаний инновационной продукции наноиндустрии на закрепленном испытательном оборудовании; ПК-4.2 Владеет методами обработки результатов испытаний инновационной продукции наноиндустрии;
ПК-8	Способен осуществлять подготовку технических решений по оптимизации технологического процесса изготовления микро- и наноразмерных электромеханических систем	ПК-8.1 Знает типовые технические решения по оптимизации технологического процесса изготовления микро- и наноразмерных электромеханических систем; ПК-8.2 Умеет осуществлять подготовку технических решений по оптимизации технологического процесса изготовления микро- и наноразмерных электромеханических систем;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Технология производства наноэлектронной базы» относится к части, формируемой участниками образовательных отношений блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Технология производства наноэлектронной базы».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ПК-3	Способен организовывать и проводить экспериментальные исследования технологических модулей и процессов	Научно-исследовательская работа (получение первичных навыков научно-исследовательской работы);	Методы диагностики в нанотехнологиях; Технологическая практика; Преддипломная практика; Научно-исследовательская работа;
ПК-4	Способен участвовать в испытаниях инновационной продукции наноиндустрии на закрепленном испытательном оборудовании в соответствии с методикой испытаний	Научно-исследовательская работа (получение первичных навыков научно-исследовательской работы);	Методы диагностики в нанотехнологиях; Технологическая практика; Преддипломная практика; Научно-исследовательская работа;
ПК-8	Способен осуществлять подготовку технических решений по оптимизации технологического процесса изготовления микро- и наноразмерных электромеханических систем	Научно-исследовательская работа (получение первичных навыков научно-исследовательской работы); Теоретическая механика;	Технологическая практика; Преддипломная практика;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Технология производства наноэлектронной базы» составляет «4» зачетные единицы. Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dur močeni nečeri	DCETO av		Семестр(-ы)	
Вид учебной работы	ВСЕГО, ак.	4.	6	
Контактная работа, ак.ч.	72		72	
Лекции (ЛК)	36		36	
Лабораторные работы (ЛР)	36		36	
Практические/семинарские занятия (СЗ)	0		0	
Самостоятельная работа обучающихся, ак.ч.	45		45	
Контроль (экзамен/зачет с оценкой), ак.ч.	27		27	
Общая трудоемкость дисциплины	ак.ч.	144	144	
	зач.ед.	4	4	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
	Основные типы наноэлектронных покрытий и методы их производства	1.1	Области применения наноэлектронных покрытий	ЛК, ЛР
		1.2	Классификация наноэлектронных покрытий	ЛК, ЛР
Раздел 1		1.3	Отличительные особенности тонкопленочного состояния вещества	ЛК, ЛР
		1.4	Термическое и электронно-лучевое испарение	ЛК, ЛР
		1.5	Химическая газофазная эпитаксия	ЛК, ЛР
		1.6	Лазерная эпитаксия	ЛК, ЛР
		1.7	Жидкофазная эпитаксия	ЛК, ЛР
		1.8	Ионно-плазменные методы	ЛК, ЛР
		1.9	Плазмохимическое осаждение	ЛК, ЛР
		1.10	Молекулярно-лучевая эпитаксия	ЛК, ЛР
	Свойства	2.1	Классификация методов диагностики и контроля	ЛК, ЛР
		2.2	Взаимодействие электронного пучка с образцом	ЛК, ЛР
Раздел 2	наноэлектронных	2.3	Электронные микроскопия и спектроскопия	ЛК, ЛР
	покрытий и их 2.4		Взаимодействие света с веществом	ЛК, ЛР
	исследования	2.5	Эллипсометрия	ЛК, ЛР
		2.6	Сканирующая зондовая микроскопия	ЛК, ЛР

^{* -} заполняется только по $\underline{\mathbf{O}\mathbf{\Psi}\mathbf{H}\mathbf{O}\mathbf{M}}$ форме обучения: $\mathit{Л}\mathit{K}$ – лекции; $\mathit{Л}\mathit{P}$ – лабораторные работы; $\mathit{C}3$ – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
	Аудитория для проведения занятий	
Лекционная	лекционного типа, оснащенная комплектом специализированной мебели;	
лекционная	доской (экраном) и техническими	
	средствами мультимедиа презентаций.	
	Аудитория для проведения лабораторных	
	работ, индивидуальных консультаций,	
Лаборатория	текущего контроля и промежуточной	
лиооритория	аттестации, оснащенная комплектом	
	специализированной мебели и	
	оборудованием.	
	Аудитория для самостоятельной работы	
Для	обучающихся (может использоваться для	
самостоятельной	проведения семинарских занятий и	
работы	консультаций), оснащенная комплектом	
риооты	специализированной мебели и	
	компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Смирнов, В. И. Физика полупроводниковых приборов : учебное пособие / В. И. Смирнов. Вологда : Инфра-Инженерия, 2023. 212 с. ISBN 978-5-9729-1241-4 https://e.lanbook.com/book/347759
- 2. Свирина, Л. П. Оптика : учебное пособие / Л. П. Свирина. Минск : БНТУ, 2022. 337 с. ISBN 978-985-583-269-1
 - https://e.lanbook.com/book/325634
- 3. Шалимова, К. В. Физика полупроводников : учебник / К. В. Шалимова. 4-е изд., стер. Санкт-Петербург : Лань, 2022. 384 с. ISBN 978-5-8114-0922-8 https://e.lanbook.com/book/210524
- 4. Букатин, А. С. Постростовые технологии создания функциональных микро- и наноструктур: учебное пособие / А. С. Букатин, М. С. Мухин, И. С. Мухин. Санкт-Петербург: СПбАУ РАН им. Ж.И. Алфёрова, 2021. 64 с. ISBN 978-5-91155-110-0. https://e.lanbook.com/book/250505
- 5. Технология тонких пленок и покрытий: учебное пособие / Л. Н. Маскаева, Е. А. Федорова, В. Ф. Марков; под общей редакцией Л. Н. Маскаевой; Министерство образования и науки Российской Федерации, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина. Екатеринбург: Издательство Уральского университета, 2019. 236 с. ISBN 978-5-7996-2560-3
- 6. Антоненко С. В. Технология тонких пленок : учебное пособие / С. В. Антоненко. Москва : НИЯУ МИФИ, 2008. 104 с. ISBN 978-5-7262-1036-0.
- 7. Технология тонких пленок : справ. : в 2 т. / под ред. Л. Майссела, Р. Глэнга ; пер. с англ. под ред. М. И. Елинсона, Г. Г. Смолко. М. : Сов. радио, 1977. Т. 1. 664с.
- 8. Технология тонких пленок : справ. : в 2 т. / под ред. Л. Майссела, Р. Глэнга ; пер. с англ. под ред. М. И. Елинсона, Г. Г. Смолко. М. : Сов. радио, 1977. Т. 2. 6 6 768с.
- 9. Применение инфракрасной спектроскопической эллипсометрии в наноинженерии: монография / М.О. Макеев, С.А. Мешков, Ю.А. Иванов. Москва: РУДН, 2018. 144 с.
- 10. Миронов В.Л. Основы сканирующей зондовой микроскопии: Учебное пособие для студентов старших курсов / Институт физики микроструктур РАН. Нижний Новгород, 2004. 114 с.
- 11. В.А. Швец, Е.В. Спесивцев. Эллипсометрия. Учебно-методическое пособие к лабораторным работам. / Новосибирск, издательство НГУ, 2013. 87 с.
 - 12. Взаимодействие электронного пучка с образцом. ФТИ им. А.Ф. Иоффе. 2010. http://phys.spbau.ru/files/ElBeamInt v.n1.0 1.pdf
- 13. Дьячков, П. Н. Электронные свойства и применение нанотрубок : монография / П. Н. Дьячков. 4-е изд. Москва : Лаборатория знаний, 2020. 491 с. (Нанотехнологии). ISBN 978-5-00101-842-1 Дополнительная литература:
 - 1. Ellipsometry Tutorial с сайта www.jawoollam.com.
- 2. Эвелина Никельшпарг. Спектроскопия КР: новые возможности старого метода. 2015.
- https://biomolecula.ru/articles/spektroskopiia-kr-novye-vozmozhnosti-starogometoda
 - 3. Денис Курек. Атомно-силовая микроскопия: увидеть, прикоснувшись.
- https://biomolecula.ru/articles/atomno-silovaia-mikroskopiia-uvidet-prikosnuvshis
- 4. Анастасия Тительмаер. Лучше один раз увидеть, или микроскопия сверхвысокого разрешения. 2012.
 - https://biomolecula.ru/articles/luchshe-odin-raz-uvidet-ilimikroskopiia-

sverkhvysokogo-razresheniia

5. Основные принципы анализа размеров частиц. Dr. Alan Rawle, Malvern Instruments Limited

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Технология производства наноэлектронной базы».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС!</u>

РАЗРАБОТЧИК:

		Короннов Алексей	
Доцент		Алексеевич	
Должность, БУП	Подпись	Фамилия И.О.	
РУКОВОДИТЕЛЬ БУП:			
Заведующий кафедрой		Попов Сергей Викторович	
Должность БУП	Подпись	Фамилия И.О.	
РУКОВОДИТЕЛЬ ОП ВО:			
		Макеев Мстислав	
Доцент		Олегович	
Должность, БУП	Подпись	Фамилия И.О.	