Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребф едеральное тосударственное автономное образовательное учреждение высшего образования Должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы»

Дата подписания: 27.05.2025 15:41:46

Уникальный программный ключ Факультет физико-математических и естественных наук са953a0120d891083f939673078ef1a969dae18a

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ТЕОРИЯ АТОМНОГО ЯДРА

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

03.04.02 ФИЗИКА

(код и наименование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

ФУНДАМЕНТАЛЬНАЯ И ПРИКЛАДНАЯ ФИЗИКА

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Теория атомного ядра» входит в программу магистратуры «Фундаментальная и прикладная физика» по направлению 03.04.02 «Физика» и изучается в 1 семестре 1 курса. Дисциплину реализует Научно-образовательный институт физических исследований и технологий. Дисциплина состоит из 5 разделов и 10 тем и направлена на изучение современных представлений о свойствах и структуре ядер, ядерных реакциях и их значении для астрофизики и ядерной энергетики

Целью освоения дисциплины является закрепление студентами основных понятий и современных представлений о свойствах и структуре ядер, ядерных реакциях и их значении для астрофизики и ядерной энергетики; закрепление представлений об экспериментальных методах измерения различных характеристик состояний ядер и изучения ядерных реакций; закрепление представления о взаимодействии ядерных излучений с веществом.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Теория атомного ядра» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ПК-1	Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта	ПК-1.1 Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости; ПК-1.2 Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Теория атомного ядра» относится к части, формируемой участниками образовательных отношений блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Теория атомного ядра».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ПК-1	Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью		Научно-исследовательская работа; Преддипломная практика; Математические методы в физике;

	Наименование	Предшествующие	Последующие
Шифр	компетенции	дисциплины/модули,	дисциплины/модули,
		практики*	практики*
	современной		Физика газовых разрядов**;
	аппаратуры и		Классическая и квантовая
	информационных		теория поля**;
	технологий с		Теория элементарных
	использованием		частиц и кварков**;
	новейшего российского и		Сильноточная
	зарубежного опыта		релятивистская
			электроника**;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Теория атомного ядра» составляет «4» зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Вид учебной работы	ВСЕГО, ак.ч.		Семестр(-ы)	
вид ученной работы			1	
Контактная работа, ак.ч.	54		54	
Лекции (ЛК) 36			36	
абораторные работы (ЛР)		0		
Практические/семинарские занятия (СЗ)	ктические/семинарские занятия (СЗ)		18	
мостоятельная работа обучающихся, ак.ч. 63			63	
Контроль (экзамен/зачет с оценкой), ак.ч.	27		27	
Общая трудоемкость дисциплины	ак.ч. 144		144	
	зач.ед.	4	4	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

	полица 5.1. Содержание дисциплины (модуля) по видам учебной работы Наименование раздела			Вид
Номер раздела	дисциплины	Содержание раздела (темы)		учебной работы*
Раздел 1	Типы взаимодействий частиц и ядер	1.1	Элементарные и фундаментальные частицы. Общая характеристика 4 типов взаимодействия элементарных частиц: сильного, электромагнитного, слабого и гравитационного. Масштабы физических величин (энергий, расстояний) в ядерной физике и физике элементарных частиц.	ЛК, СЗ
		1.2	Стабильные нестабильные ядра. Магические ядра. Изотопы и изомеры. Энергия связи ядер. Размеры и форма ядер. Методы их определения.	ЛК, СЗ
Раздел 2	Ядерные модели.Природа ядерных	2.1	Классификация ядерных моделей. Капельная модель ядра. Формула Вайцзеккера. Оболочечная модель ядра. Обобщенная модель ядра. Модель кварковых мешков для ядер. Короткодействие. Квантовые обменные виртуальные процессы. Пионная теория Юкавы. Включение других скалярных и векторных мезонов.	ЛК, СЗ
	сил.Дейтрон	2.2	Современный подход к объяснению механизма ядерного (сильного) взаимодействия. Глюоны и кварки. Дейтрон в приближении центральных сил. Дейтрон в приближении трехмерной мерной сферической ямы. Проблема дейтрона с учетом нецентрального характера ядерных сил.	ЛК, СЗ
	Ядерные реакции.	3.1	Основные понятия и определения. Общие свойства ядерных реакций. Упругие и неупругие ядерные реакции. Процессы деления и синтеза ядер. Прямые, резонансные и нерезонансные реакции. Реакции срыва, подхвата, захвата и др. Фотоядерные, электроядерные реакции и др. Законы сохранения в ядерных реакциях.	ЛК, СЗ
Раздел 3	Запалорая симметрия	3.2	Альфа-распад. Особенности альфа-распада. Прохождение частиц через потенциальный барьер (туннельный эффект). Бета-распад. Энергетический спектр электронов в процессе бета-распада. Методы определения массы нейтрино. Фермиевские и Гамов—Теллеровские переходы. Гамма-распад. Ядерная изомерия. Эффект Мёссбауэра. Измерение красного смещения.	ЛК, СЗ
Раздел 4	Уравнение Дирака. Поляризационная	4.1	Метрика Паули и метрика Бьёркена в пространстве Минковского. Уравнение Дирака для фермионов в релятивистской квантовой механике. Различные представления (формы записи) уравнения Дирака.	ЛК, СЗ
	матрица плотности.	4.2	Спин как циркуляция потока энергии в поле волны электрона. Спиральность и киральность. Двухкомпонентная формулировка уравнения Дирака.	ЛК, СЗ
Раздел 5	Релятивистская теория квантовых переходов. Методы вычисления матричных элементов.	5.1	Релятивистская квантовая теория возмущений для частиц со спином. Общая формула для вероятности перехода поляризованного фермиона из начального состояния в конечное состояние в результате взаимодействия. S-матрица.	ЛК, СЗ
		5.2	Диаграммы Фейнмана. Общие формулы для	ЛК, СЗ

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)	
		вероятностей распада поляризованных	
		фермионов и сечений рассеяния поляризованных и неполяризованных	
		фермионов на других частицах и ядрах. Физические и нефизические расходимости.	

^{* -} заполняется только по $\underline{\mathbf{OYHOЙ}}$ форме обучения: $\mathit{ЛК}$ – лекции; $\mathit{ЛP}$ – лабораторные работы; $\mathit{C3}$ – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{*} - аудитория для самостоятельной работы обучающихся указывается **ОБЯЗАТЕЛЬНО**!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Малышев Л.Г., Повзнер А.А. Физика атома и ядра. Екатеринбург: Издательство Уральского университета, 2014. 145 с. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book_red&id=276290&sr=1
- 2. Бекман И.Н. Атомная и ядерная физика: радиоактивность и ионизирующие излучения: учебник для бакалавриата и магистратуры. 2-е изд., испр. и доп. М.: Юрайт, 2017. 398 с. Электронный ресурс: https://www.biblio-online.ru/book/CC95A403-E772-48A7-AE64-B1FF80F23AEC Дополнительная литература:
 - 1. Апсэ В.А., Шмелев А.Н. Ядерные технологии: учебное пособие. М.: МИФИ,

2008. — 128 с. — [Электронный ресурс]. - URL: //biblioclub.ru/index.php?page=book&id=237951

2. Широков С.В. Физика ядерных реакторов: учебное пособие — Минск: Вышэйшая школа, 2011.-351 с. — [Электронный ресурс]. - URL:

//biblioclub.ru/index.php?page=book&id=110106

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Теория атомного ядра».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС!</u>

РАЗРАБОТЧИК:

		Самсоненко Николай
Доцент		Владимирович
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП:		
		Кравченко Николай
И.о. директора ИФИТ		Юрьевич
Должность БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:		
Профессор		Лоза Олег Тимофеевич
Должность, БУП	Подпись	Фамилия И.О.
A010101001110, D0 11	110011110	ramana 11.0.