Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чосударственное автономное образовательное учреждение высшего образования должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 02.06.2025 11:40:21

Уникальный программный ключ:

Факультет искусственного интеллекта

ca953a0120d891083f93967307 (наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ПРИКЛАДНЫЕ ЗАДАЧИ МАШИННОГО ОБУЧЕНИЯ

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

02.03.02 ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, 09.03.03 ПРИКЛАДНАЯ ИНФОРМАТИКА

(код и наименование направления подготовки/специальности)

ЛИСШИПЛИНЫ ведется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ: РАЗРАБОТКА И ОБУЧЕНИЕ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Прикладные задачи машинного обучения» входит в программу бакалавриата «Искусственный интеллект: разработка и обучение интеллектуальных систем» по направлению 02.03.02 «Фундаментальная информатика и информационные технологии» и изучается в 6, 7, 8 семестрах 3, 4 курсов. Дисциплину реализует Кафедра прикладного искусственного интеллекта. Дисциплина состоит из 8 разделов и 72 тем и направлена на изучение формирование у студентов прочных и разнообразных практических навыков построения, доработки, оптимизации и внедрения решений машинного обучения на реальных и симулированных данных из различных предметных областей. Курс делает упор на самостоятельную и групповую работу с прикладными МL-проектами: задачи цифрового здравоохранения, финансов, промышленности, цифровых гуманитарных наук, медицины, компьютерного зрения и NLP. Особое внимание уделяется построению end-to-end пайплайнов — от сбора и очистки данных до финальной автоматизации и развертывания решений.

Целью освоения дисциплины является выработать у студентов способность уверенно применять аппарат машинного обучения к прикладным задачам междисциплинарной и коммерческой направленности, осознанно выбирать тип и архитектуру моделей, проводить анализ данных, обосновывать выбор методов, оптимизировать решения, работать с индустриальными библиотеками и готовить ML-проекты к промышленной эксплуатации.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Прикладные задачи машинного обучения» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ОПК-1	Способен применять в профессиональной деятельности общеинженерные и фундаментальные знания, полученные в области математических и (или) естественных наук, в том числе методы математического анализа и моделирования, теоретического и экспериментального исследования	ОПК-1.1 Знает основные положения и концепции в области математических и естественных наук; знает основную терминологию; ОПК-1.2 Умеет осуществлять первичный сбор и анализ материала, интерпретировать различные математические объекты; ОПК-1.3 Имеет практический опыт работы с решением стандартных математических задач и применяет его в профессиональной деятельности;
ОПК-2	Способен решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационнокоммуникационных технологий, компьютерных/суперкомпьютерных методов и современного программного обеспечения, в том числе отечественного происхождения, с учетом основных требований информационной безопасности	ОПК-2.1 Обладает навыками разработки архитектуры программных систем и компонентов с учетом требований к производительности, надежности и безопасности; ОПК-2.2 Умеет применять информационно-коммуникационные технологии для поиска и анализа профессиональной информации.; ОПК-2.3 Знает основы информационной безопасности и методы защиты программного обеспечения от угроз и атак;
ОПК-3	Способен к разработке	ОПК-3.1 Знает методы теории алгоритмов, методы

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
	решений в области системного и прикладного программирования, математических, информационных и имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных баз данных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям	положения и концепции в области математических, информационных и имитационных моделей; ОПК-3.2 Умеет соотносить знания в области программирования, интерпретацию прочитанного, определять и создавать информационные ресурсы глобальных сетей, образовательного контента, средств тестирования систем; ОПК-3.3 Имеет практический опыт применения разработки программного обеспечения;
ОПК-8	Способен принимать участие в реализации профессиональных коммуникаций с заинтересованными участниками проектной деятельности и в рамках проектных групп	ОПК-8.1 Знает основные принципы профессиональной коммуникации в проектной деятельности; ОПК-8.2 Умеет взаимодействовать с участниками проектной группы в процессе осуществления проектной деятельности;
ПК-1	Способен создавать и оценивать различные модели машинного обучения, архитектуру нейронных сетей и алгоритмы искусственного интеллекта с целью выбора наиболее эффективных решений для конкретных профессиональных задач	ПК-1.1 Может выбирать подходящий алгоритм машинного обучения и архитектуру нейронных сетей для конкретной задачи, учитывая особенности данных и требования к решению; ПК-1.2 Демонстрирует навыки обработки, представления и анализа данных для построения моделей машинного обучения; ПК-1.3 Владеет методами создания и обучения моделей с использованием различных алгоритмов и архитектур; ПК-1.4 Умеет оценивать соблюдение методологии разработки различных моделей машинного обучения, архитектур нейронных сетей и алгоритмов, анализировать качество моделей и разрабатывать стратегии для улучшения качества моделей;
ПК-3	Способен разрабатывать и оптимизировать системы обучения с подкреплением и автоматизированного принятия решений в информационных системах, обеспечивая их эффективное функционирование и адаптацию для различных приложений	ПК-3.2 Демонстрирует умение разрабатывать и реализовывать алгоритмы обучения с подкреплением; ПК-3.3 Умеет интегрировать и оптимизировать системы автоматизированного принятия решений в информационных системах;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Прикладные задачи машинного обучения» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Прикладные задачи машинного обучения».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

		Предшествующие	Последующие
Шифр	Наименование компетенции	дисциплины/модули,	дисциплины/модули,
		практики*	практики*

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-1	Способен применять в профессиональной деятельности общеинженерные и фундаментальные знания, полученные в области математических и (или) естественных наук, в том числе методы математического анализа и моделирования, теоретического и экспериментального исследования	Технологическая (проектнотехнологическая) практика (учебная); Эксплуатационная практика (учебная); Дискретная математика; Линейная алгебра; Теория вероятностей и математическая статистика; Математический анализ; Статистические методы и первичный анализ данных; Дифференциальные уравнения;	Apart and
ОПК-2	Способен решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационнокоммуникационных технологий, компьютерных/суперкомпьютерных методов и современного программного обеспечения, в том числе отечественного происхождения, с учетом основных требований информационной безопасности	История и теория программирования; Программирование на языке Python; Методы машинного обучения; Этика и безопасность использования искусственного интеллекта; Методы разработки решений на основе искусственного интеллекта (Git, Docker); Программирование на языке С++; Технологическая (проектнотехнологическая) практика (учебная); Эксплуатационная практика (учебная);	
ОПК-3	Способен к разработке алгоритмических и программных решений в области системного и прикладного программирования, математических, информационных и имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных баз данных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям	Технологическая (проектнотехнологическая) практика (учебная); Эксплуатационная практика (учебная); Программирование на языке Руthon; Введение в базы данных; Наdoop, SPARK; Методы разработки решений на основе искусственного интеллекта (Git, Docker); Программирование на языке С++;	
ОПК-8	Способен принимать участие в реализации профессиональных коммуникаций с заинтересованными участниками проектной деятельности и в рамках проектных групп	Технологическая (проектно- технологическая) практика (учебная); Эксплуатационная практика (учебная);	
ПК-1	Способен создавать и оценивать различные модели машинного обучения, архитектуру нейронных сетей и алгоритмы искусственного интеллекта с целью выбора наиболее	Методы машинного обучения; Анализ естественного языка с помощью методов искусственного интеллекта; Параллельное и распределенное	

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
	эффективных решений для конкретных профессиональных задач	программирование; Обработка и анализ изображений и видео с помощью методов искусственного интеллекта; Цифровые двойники**; Основы больших языковых моделей**; Основы робототехники**;	
ПК-3	Способен разрабатывать и оптимизировать системы обучения с подкреплением и автоматизированного принятия решений в информационных системах, обеспечивая их эффективное функционирование и адаптацию для различных приложений	Анализ естественного языка с помощью методов искусственного интеллекта; Обработка и анализ изображений и видео с помощью методов искусственного интеллекта;	

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Прикладные задачи машинного обучения» составляет «12» зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dur vuoduoš nodom v	DCETO a		Семестр(-ы)		
Вид учебной работы	ВСЕГО, a:	к.ч.	6	7	8
Контактная работа, ак.ч.	144		68	40	36
Лекции (ЛК)	0		0	0	0
Лабораторные работы (ЛР)	144		68	40	36
Практические/семинарские занятия (С3)	0		0	0	0
Самостоятельная работа обучающихся, ак.ч.	225		76	41	108
Контроль (экзамен/зачет с оценкой), ак.ч.	63		0	27	36
Общая трудоемкость дисциплины	ак.ч.	432	144	108	180
	зач.ед.	12	4	3	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

	Габлица 5.1. Содержание дисциплины (модуля) по видам учебной работы			Вид
Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		учебной работы*
		1.1	Импорт и первичный анализ реального датасета	ЛР
		1.2	Очистка данных: работа с пропусками,	ЛР
		1.3	Визуализация одномерных и многомерных	ЛР
	EDA и подготовка	1.4	категориальных/текстовых признаков (one-hot	ЛР
Раздел 1	данных к обучению	1.5	Работа с несбалансированными классами:	ЛР
		1.6		ЛР
		1.7	Мультиколлинеарность и корреляционный	ЛР
		1.8		ЛР
		1.9	•	ЛР
		2.1	Реализация и тестирование логистической	ЛР
		2.2		πр
		2.2	реальных данных	ЛР
		2.3	2.3 Классификация с помощью дерева решений Настройка и диагностика ансамбля Random	ЛР
		2.4	Настройка и диагностика ансамбля Random Forest	ЛР
Раздел 2	Базовые методы	2.5	Разработка процедуры отбора признаков (feature selection) для классификации	ЛР
	классификации	2.6	Оценка моделей: confusion matrix, precision,	ЛР
		2.7	Анализ ошибок классификации и балансировка	ЛР
		2.8	Автоматизация ML pipeline для типовой задачи	ЛР
		2.9	Мини-проект: комплексное сравнение трех	ЛР
		3.1	•	ЛР
		3.2	_	ЛР
		3.3		ЛР
		3.4	Решение задачи полиномиальной регрессии	ЛР
	0	3.5	1	ЛР
Раздел 3	Основы регрессии и прикладные задачи	3.6	Прогноз на основе ансамблей регрессионных	ЛР
	прогнозирования	3.7	Анализ outliers и влияние выбросов на	ЛР
		3.8	Оценка качества регрессионных моделей: МАЕ,	ЛР
		3.9	Мини-проект: регрессия для предсказания	ЛР
		4.1	Кластеризация методом K-Means: сегментация	ЛР
	Задачи кластеризации,	4.2	Анализ облаков и дендрограмм при	ЛР
Раздел 4	сегментации и анализ сложных структур	4.3	Применение DBSCAN для обнаружения	ЛР
		4.4	Оценка качества кластеризации: silhouette score,	ЛР

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
		4.5	Снижение размерности признакового пространства: PCA, t-SNE	ЛР
		4.6	Обработка текстовых/категориальных данных в задачах кластеризации	ЛР
		4.7	Сегментация временных рядов и событийных данных	ЛР
		4.8	Построение пайплайна кластеризации для смешанного типа признаков	ЛР
		4.9	Мини-проект: кластеризация и визуализация сложного массива данных	ЛР
		5.1	Загрузка и предобработка изображений (резайз, нормализация)	ЛР
		5.2	Использование SIFT/SURF/ORB для извлечения признаков изображений	ЛР
		5.3	Базовая классификация изображений с помощью Random Forest/SVM	ЛР
		5.4	Введение в CNN на прикладной задаче (например, определение дефектов)	ЛР
Раздел 5	Прикладные задачи компьютерного зрения	5.5	Трансферное обучение с использованием pre- trained CNN	ЛР
	компьютерного зрения	5.6	Решение задачи многоклассовой классификации картинок	ЛР
		5.7	Разработка процедуры генерации новых изображений (аугментация)	ЛР
		5.8	Оценка и анализ ошибок ML-моделей для CV- задач	ЛР
		5.9	Мини-проект: автоматизация анализа изображений для индустрии	ЛР
		6.1	Предобработка текстов: токенизация, лемматизация, удаление стоп-слов	ЛР
		6.2	Векторизация текста (count vectorizer, TF-IDF) для ML-задач	ЛР
		6.3	Классификация текстов: sentiment analysis или тематическая классификация	ЛР
		6.4	Работа с простыми языковыми моделями (bag- of-words, n-граммы)	ЛР
Раздел 6	Прикладные задачи NLP	6.5	Извлечение именованных сущностей (NER) с помощью spaCy/HuggingFace	ЛР
		6.6	Тематическое моделирование: LDA на реальных текстах	ЛР
		6.7	Оценка метрик качества NLP-моделей (ассигасу, F1, ROC для текстовых задач)	ЛР
		6.8	Разработка простого чат-бота с использованием правил и/или простой ML-модели	ЛР
		6.9	правил и/или простои ML-модели Мини-проект: полный ML-пайплайн для обработки и анализа текстов	ЛР
		7.1	Агрегация и ресемплирование временных рядов	ЛР
		7.2	различных типов Прогнозирование с использованием ARIMA/SARIMA	ЛР
	Временные ряды,	7.3	Применение регрессии и ансамблей к данным	ЛР
Раздел 7	прогнозирование,	7.4	временных рядов Экстракция сезонных и трендовых паттернов	ЛР
	аномалия-дитекция	7.5	Дитекция аномалий в последовательностях (z-score, Isolation Forest)	ЛР
		7.6	ML-решения для временных рядов: будущее событий, фоллоу-апы, посещаемость и спрос	ЛР
		7.7	Оценка и интерпретация метрик прогноза для	ЛР

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
			бизнес-/anomaly-detection-задач	
		7.8	Визуализация динамики и изменений во временных рядах	ЛР
		7.9	Мини-проект: прогнозирование и аномалия- дитекция в бизнесе/промышленности	ЛР
		8.1	Интеграция модели ML в web/API приложение	ЛР
		8.2	Batch и stream-инференс: организация работы в реальном времени	ЛР
		8.3	Мониторинг метрик, автоматизированное логирование и алёртинг	ЛР
		8.4	Практика CI/CD для ML: автоматизация обучения/тестирования/выкатки	ЛР
Раздел 8	Развертывание,	8.5	логирование и алёртинг Практика СІ/СО для МL: автоматизация обучения/тестирования/выкатки Использование MLflow/DVC для управления экспериментами	ЛР
Раздел в	автоматизация и поддержка ML-проекта	8.6	Создание комплексной документации и пользовательских инструкций	ЛР
		8.7	Рефакторинг и оптимизация пайплайна (ускорение, уменьшение объема)	ЛР
		8.8	Работа с docker-контейнеризацией в ML- разработке	ЛР
	8.9 Pa	Итоговый мини-проект: промышленное развертывание и поддержка end-to-end ML-решения	ЛР	

^{*} - заполняется только по <u>**ОЧНОЙ**</u> форме обучения: ЛК – лекции; ЛP – лабораторные работы; C3 – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Компьютерный класс	Компьютерный класс для проведения занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная персональными компьютерами (в количестве 25 шт.), доской (экраном) и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Просиз, Джеф. Прикладное машинное обучение и искусственный интеллект для инженеров: решение задач, которые невозможно решить алгоритмически / Джеф Просиз; [перевод с английского И. Донченко]. Астана: АЛИСТ, 2024. 431 с.: ил.; 24 см.; ISBN 978-601-09-5051-1
- 2. Машинное обучение: учебник: / Е. Ю. Бутырский, В. В. Цехановский, Н. А. Жукова [и др.]. Москва: Директ-Медиа, 2023. 368 с.: ил., табл., схем., граф. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=701807 Дополнительная литература:
- 1. Вишневский, В. М. Теория очередей и машинное обучение: монография / В.М. Вишневский, Д.В. Ефросинин. Москва: ИНФРА-М, 2024. 370 с.: ил. (Научная мысль). ISBN 978-5-16-020572-4. Текст: электронный. URL: https://znanium.ru/catalog/product/2184048
- 2. Протодьяконов, А. В. Асимптотический анализ поведения прикладных моделей машинного обучения: учебное пособие / А. В. Протодьяконов, А. В. Дягилева, П. А. Пылов. Москва; Вологда: Инфра-Инженерия, 2023. 144 с. ISBN 978-5-9729-1455-5. Текст: электронный. URL: https://znanium.com/catalog/product/2092459 Ресурсы информационно-телекоммуникационной сети «Интернет»:
- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН https://mega.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС «Юрайт» http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Знаниум» https://znanium.ru/
 - 2. Базы данных и поисковые системы
 - Sage https://journals.sagepub.com/
 - Springer Nature Link https://link.springer.com/
 - Wiley Journal Database https://onlinelibrary.wiley.com/
 - Наукометрическая база данных Lens.org https://www.lens.org

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Прикладные задачи машинного обучения».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС!</u>

РАЗРАБОТЧИК:

Заведующий кафедрой		
прикладного искусственного		Подолько Павел
интеллекта		Михайлович
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП:		
Заведующий кафедрой		
прикладного искусственного		Подолько Павел
интеллекта		Михайлович
Должность БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:		
Заведующий кафедрой		
прикладного искусственного		Подолько Павел
интеллекта		Михайлович
Должность, БУП	Подпись	Фамилия И.О.