Federal State Autonomous Educational Institution of Higher Education

Документ подписан простой электренсой расктренсой тренсов и RIENDSHIP UNIVERSITY OF RUSSIA

Информация о владельце:

RUDN University

ФИО: Ястребов Олег Александрович Должность: Ректор

Institute of Medicine

Дата подписания: 05.06.2024 15.35.43 division (faculty/institute/academy) as higher education programme developer Уникальный программный ключ:

ca953a0120d891083f939673078ef1a989dae18a

COURSE	SVLI	LARIIS

Physics
course title
Recommended by the Didactic Council for the Education Field of:
31.05.03 Dentistry
field of studies / speciality code and title
The course instruction is implemented within the professional education programme of higher education:
Dentistry

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course **«Physics»** is to obtain basic knowledge about the basic laws and concepts of physics, necessary for the formation of skills of physical thinking, natural scientific outlook and practical activities of a doctor. Learn the basic physical laws. To develop the ability to use physical abstractions and models when one's considering medical and biological problems and taking into account the conditions of applicability of the assumptions made. Form the skill to quantify the accuracy of scientific forecasting and experimental results.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the course (module) "**Physics**" is aimed at the development of the following competences /competences in part: GC-1.2, GPC-4.2.

Table 2.1. List of competences that students acquire through the course study

Competence e code	Competence descriptor	Competence formation indicators (within this course)
GC-1	Being able to implement critical analysis of problem situations based on systems approach, develop an action strategy.	GC-1.2. Assessing in a critical way the reliability of information sources; working with contradictory information from different sources.
GPC-4	Being able to use medical products prescribed by the medical procedure, as well as to carry out examinations of the patient for diagnosis.	GPC -4.2. Being able to evaluate the effectiveness and safety of the use of medical devices.

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course refers to the <u>core/</u>variable/elective* component of (B1) block of the higher educational programme curriculum.

* - Underline whatever applicable.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Competence code	Competence descriptor	Previous courses/m odules*	Subsequent courses/modules*
GC-1	Being able to implement		Biochemistry
	critical analysis of problem		Hygiene
	situations based on	-	Public health and healthcare, healthcare
	systems approach, develop		economics
	an action strategy.		Epidemiology

GPC-4	Being able to use medical devices provided for by the procedure for providing medical care, as well as to conduct patient examinations in order to determine a diagnosis. GPC-4. Being able to use medical devices provided for by the procedure for medical care, and conduct patient examinations in order to determine a diagnosis	Neurology, Medical Biochemistry Hygiene Public health and healthcare, healthcare economics Epidemiology Neurology, medical genetics, neurosurgery Hospital therapy Endocrinology Infectious diseases Phthisiology Medical Elementology Allergology Introduction to Nutritionology General surgery Neurology, medical genetics, neurosurgery Faculty therapy Endocrinology Obstetrics and gynecology Emergency Medical Manipulation Practice (Simulation Center)

^{*} To be filled in according to the competence matrix of the higher education programme.

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

The total workload of the course is 2 credits (72 academic hours).

Table 4.1. Types of academic activities during the periods of higher education programme mastering (<u>full-time training</u>)*

Type of academic activities		Total academic	Sei	mesters mod		ng
		hours	2			
Contact academic hours		51	51			
including:		-	-	-	-	-

Lectures(LC)		17	17		
Laboratory work (LW)		34	34		
Seminars (S)		-	-		
Self-studies		21	21		
Evaluation and assessment (exam/passing/failing grade)					
Course workload	ac.hours	72	72		
	credits	2	2		

^{*} To be filled in regarding the higher education programme correspondence training mode.

5. COURSE CONTENTS

Table 5.1. Course contents and academic activities types

Course module title	Course module contents (topics)	Academic activities types
Introductory lecture.	Methods of processing of measurement results. Direct andindirect measurements. Theory of errors. Types of errors: gross, systematic, random; absolute, relative. Rules for registration of laboratory work. The order of writing theabstract. Safety at work in the	LC, LW
Fundamentals of vector and mathematical analysis	physical laboratory. Basic concepts of mathematical and vector analysis. Derivatives and differentials. Rules for adding (subtracting) and multiplying vectors. Integration rules. Calculations of indefinite and definite integrals.	LC, LW
Mechanics. Dynamics, mechanical oscillations	Introduction. Definitions (kinematics, dynamics, statics, trajectory, reference systems, equation of motion). Rectilinear motion. Circular motion. Inertia. Force of inertia. Dynamics of rotational motion. Moment of inertia. The moment of impulse and the law of its preservation. Gravitational interaction. Acceleration of gravity. Weightlessness. Harmonic vibrations. Gravitational interaction of gravity.	LC, LW
	Work and energy. Potential field, the work of conservative forces, potential energy. Kinetic energy. The law of conservation of energy. Rotational motion of a rigid body. A moment of strength. The basic equation of the dynamics of rotational motion. The equation of motion of the angular momentum. The law of conservation of the	LC, LW

	angular momentum.	
The waves.	Mechanical waves. The plane wave equation.	LC, LW
Sound wave	Parameters of vibrations and waves. Energy	
	characteristics. The Doppler effect and its use	
	in medicine. Sound. Types of sounds. A	
	complex tone and its acoustic spectrum. Wave	
	resistance. Objective(physical)and subjective	
	(biological) characteristics of sound.	
	Infrasound. Ultrasound, the physical basis of	
	application in medicine.	
Hydrostatic.	The viscosity. Methods for determining the	LC, LW
Molecular	viscosity of liquids. Stationary flow, laminar	LC, LW
Physics	and turbulent flows. Newton's formula,	
Thysics	Newtonian and non-Newtonian liquids. The	
	Poiseuille formula. The Reynolds number.	
	Features of hemodynamics in the main,	
	resistive, capillary and venous vessels of the	
	circulatory model. Work and warmth. The	
	first beginning of thermodynamics. Heat	
	capacity. An adiabatic process (Poisson's	
	formula). The basic equation of molecular	
	kinetic theory. The heat and motion of	
	molecules. The first principle of	
	thermodynamics applied to the human body.	
	The role of nutrition and respiration. Internal	
	energy. Internal pressure and surface tension	
	in the fluid. Diffusion. Osmosis. Wetting	
Electricites and	Capillary phenomena.	I C I W
Electricity and	Electric charges and their properties.	LC, LW
magnetism	Coulomb's law. The electrostatic field. Field	
	strength. Power lines. Potential. Equipotential	
	surfaces. The relationship between tension	
	and potential. Conductors in an electrostatic	
	field. Electrical capacity. Capacitors, their	
	connection. The energy of the electric field.	
	Current strength and current density.	
	Electromotive force (EMF.). of the EMF	
	source. Ohm's law for a homogeneous,	
	inhomogeneous section of the circuit, for a	
	closed circuit. The Kirchhoff rules. Ohm's	
	laws and Kirchhoff'srules for direct current.	

	Electric and magnetic fields, currents and electromagnetic fields. The total resistance (impedance) in electrical circuits. Ohm's law for alternating current and voltage. Diathermy. UHF therapy. Microwave therapy. Physical foundations of rheography and its application in medicine.	
Optics	Geometric optics. The phenomenon of total internal reflection of light. Refractometry. Fiber optics. The eye is an optical system. Microscopy. Wave optics. Electromagnetic waves. The scale of electromagnetic waves. Energy characteristics of light fluxes: the flux of light radiation and the flux density (intensity). Diffraction grating. The resolution of optical devices and the eye. The polarization of light. Polarization microscopy. Polarimetry. The interaction of light with matter. Light scattering. Light absorption. The Booger-Lambert-Behr law.	LC, LW
Electromagnetic radiation of the optical range	Thermal radiation. Characteristics and laws of thermal radiation. The spectrum of black body radiation. The radiation of the Sun. Application of Kirchhoff's law for measuring brightness temperature. Calculation of the radiation temperature based on the Stefan-Boltzmann law. Lasers and their application.	LC, LW
Atomic structure. EPR.NMR. Ionizing radiation.	Atomic structure. Nuclear force. Isotopes. Electronic paramagnetic resonance. Nuclear magnetic resonance. Principles of magnetic resonance imaging. Electron-positron tomography. Ultraviolet radiation and its application. X-ray radiation and its use in land management. Radioactive radiation. Detection and dosimetry of ionizing radiation	LC, LW

^{* -} to be filled in only for <u>full</u>-time training: *LC* - *lectures*; *LW* - *lab work*; *S* - *seminars*.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
Lecture	A lecture hall for lecture-type classes, equipped with a set of specialised furniture; board (screen) and technical means of multimedia presentations.	
Lab work	A classroom for laboratory work, individual consultations, current and mid-term assessment; equipped with a set of specialised furniture and machinery.	List of specialised laboratory equipment, machinery, stands, etc.
Seminar	A classroom for conducting seminars, group and individual consultations, current and mid-term assessment; equipped with a set of specialised furniture and technical means for multimedia presentations.	List of specialised equipment, stands, visual posters, etc.
Computer Lab	A classroom for conducting classes, group and individual consultations, current and mid-term assessment, equipped with personal computers (in the amount ofpcs), a board (screen) and technical means of multimedia presentations.	List of specialised software installed on computers for mastering the discipline
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialised furniture and computers with access to the electronic information and educational environment.	

^{*} The premises for students' self-studies are subject to **MANDATORY** mention

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main readings:

- 1. Samuel. J Ling, Jeff Sanny, William Moebs (2016), "University Physics Vol 1", Openstax, RiceUniversity, .
- 2. Samuel. J Ling, Jeff Sanny, William Moebs (2016), "University Physics Vol 2", Openstax, RiceUniversity, .
- 3. Radj Kumar, G.L. Mittal (1997), "Physics", Nageen Prakasham, Meerut.
- 4. Tom Duncan, Heather Kennett, (2014) "Cambridge IGCSE Physics Third Edition", Hodder Education, an Hachette UK Company.
- 5. Ahmed Mohammed (2008)," **Physics for Medical Students**", Wheatmark, 610 East Delano Street, suite 104, Tucsun, Arisona 85705 U.S.A.
- 6. Karnilovich S. P., Yahya Shaar, "**The process of solving problems in physics**". Study guide forforeign students of RUDN and abroad. M.: RUDN, 2019. p.64

Additional readings:

- 1. V.M. Yavorsky, A.A. Pinsky. Fundamentals of Physics. -M .: Nauka, 2007.V..
- 2. N.I. Golovtsov, I.M. Kashirsky, A.P. Loginov, N.A. Kovalchukov, A.K. Nikitin,
 - T.A. Ryzhov. Tasks in physics. –M.: Publishing house of RUDN University, 2008. –159c.2.

- **3.** Konev S.V., Volotovsky I.D. Photobiology // Minsk: BSU, 1974 285 p.
- **4.** Nerpin S.V., Chudnovsky A.F. Energy and mass transfer in the system "plant-soil-air" // L ::Hydrometeoizdat, 1975. 358 s.
- **5.** Vladimirov Yu.A. and others. Biophysics // M .: Medicine, 1991 427 c.
- b) software: OC MS Windows (XP и выше), MS Office 2010, Mentor, TUIS.
- c) databases, reference and retrieval systems
- 1. «Soros Educational Journal» http://www.issep..rssi.ru
- 2. Project "Ramler-science" natural sciences http://www.nature.ru 3. Electronic version of the journal "Science" http://www.sciencemag.org

*Training toolkit for self- studies to master the course *:*

- 1. The set of lectures on the course "Physics"
- 2. The laboratory workshop (if any).on the course "Physics"
- 3. The guidelines for writing a course paper / project (if any) on the course "Physics".
- * The training toolkit for self- studies to master the course is placed on the course page in the university telecommunication training and information system under the set procedure.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

The assessment toolkit and the grading system* to evaluate the competences formation level (GC-1.2, GPC-4.2.) upon the course study completion are specified in the Appendix to the course syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS: Deputy Director of Physical Research L.V. Konovaltseva and Technology Department position, department name and surname signature **HEAD OF EDUCATIONAL DEPARTMENT:** Director of Physical Research and O.T. Loza **Technology Department** name of department signature name and surname **HEAD** OF HIGHER EDUCATION PROGRAMME: First Deputy Director of MI for I.V. Radysh **Academic Affairs** position, department signature name and surname