Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребф едеральное чтосударственное автономное образовательное учреждение высшего образования Должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 26.05.2025 11:09:51

Уникальный программный ключфакультет физико-математических и естественных наук

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МАТЕМАТИЧЕСКАЯ БИОЛОГИЯ И БИОИНФОРМАТИКА

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

01.03.02 ПРИКЛАДНАЯ МАТЕМАТИКА И ИНФОРМАТИКА

(код и наименование направления подготовки/специальности)

ДИСШИПЛИНЫ велется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

ПРИКЛАДНАЯ МАТЕМАТИКА И ПРОГРАММИРОВАНИЕ

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Мathematical Biology and Bioinformatics» входит в программу бакалавриата «Прикладная математика и программирование» по направлению 01.03.02 «Прикладная математика и информатика» и изучается в 5 семестре 3 курса. Дисциплину реализует Математический институт имени академика С.М. Никольского. Дисциплина состоит из 4 разделов и 15 тем и направлена на изучение современных подходов к исследованию биологических систем, использующих математические и вычислительные методы, а также на формирование у слушателей естественнонаучного мировоззрения.

Целью освоения дисциплины является получение базовых знаний о способах построения математических моделей биологических систем и о способах анализа построенных моделей.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Математическая биология и биоинформатика» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ОПК-4	Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	ОПК-4.1 Представляет результаты работы в виде научной публикации (тезисы доклада, статья, обзор) на русском и английском языке; ОПК-4.2 Представляет результаты своей работы в устнойформе на русском и английском языке;
ПК-1	Способен к определению общих форм и закономерностей отдельной предметной области	ПК-1.1 Планирует отдельные стадии исследования при наличии общего плана НИР; ПК-1.2 Готовит элементы документации, проекты планов и программ отдельных этапов НИР; ПК-1.3 Выбирает методы исследования для решения поставленных задач НИР; ПК-1.4 Проводит первичный поиск информации по заданной тематике; ПК-1.5 Способен изучать математическую структуру с применением расчётных методов; ПК-1.6 Способен публично представлять известные научные исследования; ПК-1.7 Способен представлять собственные научные достижения;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Математическая биология и биоинформатика» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Математическая биология и биоинформатика».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-4	Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности	Функциональный анализ;	Введение в классическую дифференциальную геометрию; Математическая логика;
ПК-1	Способен к определению общих форм и закономерностей отдельной предметной области	Компьютерные науки и технологии программирования; Функциональный анализ; Дискретная математика;	Научно-исследовательская работа; Преддипломная практика; Научный семинар по дифференциальным и функционально-дифференциальным уравнениям; Первые понятия топологии**; Введение в классическую дифференциальную геометрию; Математическая логика; Численные методы; Элементы компьютерных технологий в исследовании операций; Математические и компьютерные методы оптимизаций; Нелинейные модели математической физики; Моделирование процессов с учетом прошлых состояний системы; Дополнительные главы математического моделирования;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Mathematical Biology and Bioinformatics» составляет «2» зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Вид учебной работы	ВСЕГО, ак.ч.		Семестр(-ы)	
вид ученной работы			5	
Контактная работа, ак.ч.	34		34	
Лекции (ЛК)	17		17	
Лабораторные работы (ЛР)	0		0	
Практические/семинарские занятия (СЗ)	17		17	
Самостоятельная работа обучающихся, ак.ч.	38		38	
Контроль (экзамен/зачет с оценкой), ак.ч.	0		0	
Общая трудоемкость дисциплины	ак.ч.	72	72	
	зач.ед.	2	2	

Общая трудоемкость дисциплины «Mathematical Biology and Bioinformatics» составляет «2» зачетные единицы.

Таблица 4.2. Виды учебной работы по периодам освоения образовательной программы высшего образования для очно-заочной формы обучения.

Dura vinofino y mofora v	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			8	
Контактная работа, ак.ч.	36		36	
Лекции (ЛК)			18	
Лабораторные работы (ЛР)	0		0	
Практические/семинарские занятия (С3)	с/семинарские занятия (C3) 18		18	
Самостоятельная работа обучающихся, ак.ч.	36		36	
Контроль (экзамен/зачет с оценкой), ак.ч.	0		0	
Общая трудоемкость дисциплины	ак.ч.	72	72	
	зач.ед.	2	2	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
Раздел 1	Введение в математическое моделирование	1.1	Принципы математического моделирования	ЛК
Раздел 2	Модели, описываемые одним дифференциальным уравнением	2.1	Качественный анализ одного ОДУ: общий вид, решение, интегральные кривые, фазовое пространство, фазовые переменные, траектория.	ЛК
		2.2	Стационарные точки, устойчивость, методы определения устойчивости: по правой части, по первому приближению. Вывод системы первого приближения.	ЛК, СЗ
		2.3	Модели, описывающие динамику изолированной популяции: модель Мальтуса, логистическое уравнение, размножение путём скрещивания, модели с наименьшей критической численностью. Эффект Олли.	ЛК, СЗ
		2.4	Зависимость одного ОДУ от параметра. Типы бифуркаций.	ЛК, СЗ
		2.5	Обезразмеривание.	ЛК, СЗ
	Модели, описываемые двумя и более дифференциальными уравнениями	3.1	Общие сведения. Исследование устойчивости положений равновесия нелинейных систем по первому приближению.	ЛК, СЗ
		3.2	Положения равновесия в системе 2x2, грубые положения равновесия; бифуркационная диаграмма системы 2x2	ЛК
Раздел 3		3.3	Системы взаимодействия видов. Модель Лотки-Вольтерры. Модель конкуренции видов.	ЛК, СЗ
		3.4	Понятие предельного цикла. Модель хищникжерва Гаузе.	ЛК, СЗ
		3.5	SIR модель развития эпидемии	ЛК, СЗ
			3.6	Простейшие модели иммунологии. Модель Марчука. Модель UIV
Раздел 4	Пространственно распределённые модели биологических процессов	4.1	Диффузия для описания случайного движения. Реакционно-диффузионные уравнения. Уравнение теплопроводности.	ЛК, СЗ
		4.2	Бегущие волны в реакционно-диффузионных уравнениях. Уравнение КПП-Фишера; оценка минимальной скорости волны	ЛК, СЗ
		4.3	Иммунологическая модель UIV с учётом пространственного распределения	ЛК, СЗ

^{*} - заполняется только по <u>**ОЧНОЙ**</u> форме обучения: $\mathit{ЛК}$ – лекции; $\mathit{ЛP}$ – лабораторные работы; $\mathit{C3}$ – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
---------------	---------------------	--

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	компьютерный класс. Python (numpy, integrate, scipy, matplotlib), vs code с поддержкой python, jupyter notebook
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Ризниченко Г.Ю. Лекции по математическим моделям в биологии. Издательство «РХД», 2011 г.
- 2. Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии. Издательская фирма "Физико-математическая литература", 2009. *Пополнительная литература*:
- 1. Самарский Александр Андреевич. Математическое моделирование. Идеи. Методы. Примеры / А.А. Самарский, А.П. Михайлов. 2-е изд., испр. М. : Физматлит, 2002. 320 с. : ил.
- 2. Мюррей Джеймс Д. Математическая биология. Т. 1 : Введение / Д. Мюррей ; пер. с англ. Л.С. Ванаг и А.Н. Дьяконовой; под науч. ред. Г.Ю. Ризниченко. Москва ; Ижевск : НИЦ "Регулярная и хаотическая динамика" : Институт компьютерных исследований, 2009. 776 с. (Биофизика. Математическая биология). ISBN 978-5-93972-743-3 : 1022.00.
- Мюррей Джеймс Д. Математическая биология. Т. 2 : Пространственные модели и их приложения в биомедицине / Д.Д. Мюррей ; под науч. ред. Г.Ю. Ризниченко; пер. с англ. А.Н. Дьяконовой, А.В. Дюба, П.В. Шелякина. Москва ; Ижевск : НИЦ " Регулярная и хаотическая динамика" : Ижевский институт компьютерных исследований, 2011. 1104 с. : ил. (Биофизика. Математическая биология). ISBN 978-5-93972-882-9 : 1110.00.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров

- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Математическая биология и биоинформатика».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

РАЗРАБОТЧИКИ:

		Мозохина Анастасия
		Сергеевна
Должность, БУП	Подпись	Фамилия И.О.
		Мозохина Анастасия
		Сергеевна
Должность, БУП	Подпись	Фамилия И.О
РУКОВОДИТЕЛЬ БУП:		
		Муравник Андрей
		Борисович [М] директор
Заведующий кафедрой		образовате
Должность БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:		
		Скубачевский Александр
		Леонидович
Должность, БУП	Подпись	Фамилия И.О.