Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олег Арександрови State Autonomous Educational Institution of Higher Education Должность: Ректор

Дата подписания: 14.10.2025 17:39.02 PEOPLES' FRIENDSHIP UNIVERSITY OF RUSSIA

Уникальный программный ключ:

11/1

NAMED AFTER PATRICE LUMUMBA

ca953a0120d891083f939673078ef1a989dae18a

RUDN University Institute of Medicine

educational division (faculty/institute/academy) as higher education programme developer

1. COURSE GOAL(s)

The goal of the course "**Physics**" is to provide a foundational understanding of key physics principles and their applications in dental sciences for dentistry students. The course aims to:

- 1. **Develop Scientific Competence** Equip students with essential knowledge of mechanics, thermodynamics, electricity, optics, and radiation physics relevant to dental practice.
- 2. **Enhance Problem-Solving Skills** Foster analytical and critical thinking abilities to apply physical concepts in diagnosing and addressing dental challenges.
- 3. **Support Clinical Applications** Demonstrate how physics principles underpin dental technologies, such as X-rays, lasers, imaging systems, and biomechanics of dental materials.
- 4. **Promote Safety and Efficiency** Educate students on the safe and effective use of physics-based dental equipment while adhering to ethical and professional standards.
- 5. **Prepare for Advanced Studies** Lay a strong foundation for future learning in subjects like radiology, prosthodontics, and biomedical engineering within dentistry.

By integrating theoretical knowledge with practical examples, the course ensures that dentistry students appreciate the role of physics in modern dental care and technological advancements in the field.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the course (module) "Physics" is aimed at the development of the following competences /competences in part: GPC-8.

Table 2.1. List of competences that students acquire through the course study

Competence code	Competence descriptor	Competence formation indicators (within this course)
GPC-8	Being able to use main physical and chemical, mathematic and scientific notions and methods when dealing with professional tasks;	GPC-8.1. Analyzing the factors of harmful impact on the vital functions of the elements of the environment (technical means, technological processes, materials, buildings and structures, natural and social phenomena); GPC-8.2. Identifying hazardous and harmful factors within the framework of the carried out activities; GPC-8.3. Solving problems related to unsafe behavior and participating in activities to prevent emergencies in the workplace; GPC-8.4. Observing and explaining the rules of behavior in case of emergencies of natural and

	man-made origin; providing first aid; participating in recovery
	activities;

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course refers to the <u>core</u>/variable/elective* component of (B1) block of the higher ducational programme curriculum.

* - Underline whatever applicable.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Competence	Competence	Previous	Subsequent courses/modules*
	<u> </u>	Jui ses/modules	Riochemistry
GPC-8	descriptor Being able to use main physical and chemical, mathematic and scientific notions and methods when dealing with professional tasks;	ourses/modules*	Biochemistry Hygiene Public health and healthcare, healthcare economics Epidemiology Neurology, Medical Biochemistry Hygiene Public health and healthcare, healthcare economics Epidemiology Neurology, medical genetics, neurosurgery
			Hospital therapy Endocrinology Infectious diseases Phthisiology Medical Elementology Allergology Introduction to Nutritionology

4. THE DISCIPLINE WORKLOAD AND ACADEMIC ACTIVITIES

The total workload of the course "Physics" is 2 credits (72 academic hours).

Table 4.1. Types of academic activities during the periods of higher education programme mastering (full-time training)*

Type of academic activities		Total academic	Semesters/training modules	
		hours	1	
Classes (total) ac.h.		34	34	
Including:				
Lectures (LC)		17	17	-
Lab work (LW)				
Seminars (workshops/tutorials) (S)		17	17	-
Self-studies		26	26	
Evaluation and assessment (exam/passing/failing grade)		12	12	
Total course workload academ hours		72	72	
	credits	2	2	

^{*} To be filled in regarding the higher education programme correspondence training mode.

5. COURSE CONTENTS

Table 5.1. Course contents and academic activities types

Course module title	Course module contents (topics)	Academic activities types
Introductory	Methods of processing of measurement results.	activities types LC, S
lecture.	Direct and indirect measurements. Theory of	
Fundamentals of vector and mathematical analysis	errors. Types of errors: gross, systematic, random; absolute, relative. Rules for registration of laboratory work. The order of writing the abstract. Safety at work in the physical laboratory. Basic concepts of mathematical and vector analysis. Derivatives and differentials. Rules	
	for adding (subtracting) and multiplying vectors. Integration rules. Calculations of indefinite and definite integrals.	
Mechanics. Dynamics, mechanical oscillations	Introduction. Definitions (kinematics, dynamics, statics, trajectory, reference systems, equation of motion). Rectilinear motion. Circular motion. Inertia. Force of inertia. Dynamics of rotational motion. Moment of inertia. The moment of impulse and the law of its preservation. Gravitational interaction. Acceleration of gravity. Weightlessness. Harmonic vibrations.	LC, S

The waves. Sound wave	Gravitational interaction. Acceleration of gravity. Work and energy. Potential field, the work of conservative forces, potential energy. Kinetic energy. The law of conservation of energy. Rotational motion of a rigid body. A moment of strength. The basic equation of the dynamics of rotational motion. The equation of motion of the angular momentum. The law of conservation of the angular momentum. Mechanical waves. The plane wave equation. Parameters of vibrations and waves. Energy	LC, S
	characteristics. The Doppler effect and its use in medicine. Sound. Types of sounds. A complex tone and its acoustic spectrum. Wave resistance. Objective(physical)and subjective (biological) characteristics of sound. Infrasound. Ultrasound, the physical basis of application in medicine.	
Hydrostatic. Molecular Physics	The viscosity. Methods for determining the viscosity of liquids. Stationary flow, laminar and turbulent flows. Newton's formula, Newtonian and non-Newtonian liquids. The Poiseuille formula. The Reynolds number. Features of hemodynamics in the main, resistive, capillary and venous vessels of the circulatory model. Work and warmth. The first beginning of thermodynamics. Heat capacity. An adiabatic process (Poisson's formula). The basic equation of molecular kinetic theory. The heat and motion of molecules. The first principle of thermodynamics applied to the human body. The role of nutrition and respiration. Internal energy. Internal pressure and surface tension in the fluid. Diffusion. Osmosis. Wetting Capillary phenomena.	LC, S
Electricity and magnetism	Electric charges and their properties. Coulomb's law. The electrostatic field. Field strength. Power lines. Potential. Equipotential surfaces. The relationship between tension and potential. Conductors in an electrostatic field. Electrical capacity. Capacitors, their	LC, S

	connection. The energy of the electric field. Current strength and current density. Electromotive force (EMF.). of the EMF source. Ohm's law for a homogeneous, inhomogeneous section of the circuit, for a closed circuit. The Kirchhoff rules. Ohm's laws and Kirchhoff's rules for direct current. Electric and magnetic fields, currents and electromagnetic fields. The total resistance (impedance) in electrical circuits. Ohm's law for alternating current and voltage. Diathermy. UHF therapy. Microwave therapy. Physical foundations of rheography and its application in medicine.	
Optics	Geometric optics. The phenomenon of total internal reflection of light. Refractometry. Fiber optics. The eye is an optical system. Microscopy. Wave optics. Electromagnetic waves. The scale of electromagnetic waves. Energy characteristics of light fluxes: the flux of light radiation and the flux density (intensity). Diffraction grating. The resolution of optical devices and the eye. The polarization of light. Polarization microscopy. Polarimetry. The interaction of light with matter. Light scattering. Light absorption. The Booger-Lambert-Behr law.	LC, S
Electromagnetic radiation of the optical range	Thermal radiation. Characteristics and laws of thermal radiation. The spectrum of black body radiation. The radiation of the Sun. Application of Kirchhoff's law for measuring brightness temperature. Calculation of the radiation temperature based on the Stefan-Boltzmann law. Lasers and their application.	LC, S
Atomic structure. EPR. NMR. Ionizing radiation.	Atomic structure. Nuclear force. Isotopes. Electronic paramagnetic resonance. Nuclear magnetic resonance. Principles of magnetic resonance imaging. Electron-positron tomography. Ultraviolet radiation and its application. X-ray radiation and its use in land management.	LC, S
	radiation and its use in land management. Radioactive radiation. Detection and dosimetry	

of ionizing radiation	

^{* -} to be filled in only for **full** -time training: LC - lectures; LW - lab work; S - seminars.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Type of academic activities Learning Lab	Classroom equipment General Physics Lab is equipped with a set of specialized furniture, lab equipment and experimental set-up. (classrooms. 319, 325, 340).	Specialised educational / laboratory equipment, software, and materials for course study (if necessary) Meter ruler, calipers, scales, micrometers, microscopes, sample small rigid bodies, mathematical pendulum, timers, audiometer, glycerin, electrocardiography simulator, optical lenses, light source, He- Ne laser, diffraction grating,
		Clement-Desormes' experimental set-up, ammeter, DC generator, ohmmeter, voltmeter, capillary phenomenon experimental set-up.
Seminar	A classroom for lecture-type classes, equipped with a set of specialized furniture; board (screen) and technical means of multimedia presentations.	Software: Microsoft products (OS, office suite, including MSOffice/Office 365), laptops, multimedia projectors. Surgery videos. Digital versions of lectures and seminars on surgery, video materials from foreign surgical clinics, handouts in the form of tests, posters, methodological publications.

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main readings:

- 1. Samuel. J Ling, Jeff Sanny, William Moebs (2016), "University Physics Vol 1", Openstax, Rice University, .
- 2. Samuel. J Ling, Jeff Sanny, William Moebs (2016), "University Physics Vol 2", Openstax, Rice University, .
- 3. Radj Kumar, G.L. Mittal (1997), "Physics", Nageen Prakasham, Meerut.

- 4. Tom Duncan, Heather Kennett, (2014) "Cambridge IGCSE Physics Third Edition", Hodder Education, an Hachette UK Company.
- 5. Ahmed Mohammed (2008)," **Physics for Medical Students**", Wheatmark, 610 East Delano Street, suite 104, Tucsun, Arisona 85705 U.S.A.
- 6. Karnilovich S. P., Yahya Shaar, "The process of solving problems in physics". Study guide for foreign students of RUDN and abroad. M.: RUDN, 2019. p.64

Additional readings:

- 1. V.M. Yavorsky, A.A. Pinsky. Fundamentals of Physics. -M.: Nauka, 2007.V..
- 2. N.I. Golovtsov, I.M. Kashirsky, A.P. Loginov, N.A. Kovalchukov, A.K. Nikitin, T.A.
 - **3.** Ryzhov. Tasks in physics. –M.: Publishing house of RUDN University, 2008. 159c.2.
 - 4. Konev S.V., Volotovsky I.D. Photobiology // Minsk: BSU, 1974 285 p.
 - **5.** Nerpin S.V., Chudnovsky A.F. Energy and mass transfer in the system "plant-soilair" // L .:
 - **6.** Hydrometeoizdat, 1975. 358 s.
 - 7. Vladimirov Yu.A. and others. Biophysics // M.: Medicine, 1991 427 c.
- c) software: OC MS Windows (XP и выше), MS Office 2010, Mentor, TUIS.

Electronic full-text materials:

- 1. «Soros Educational Journal» http://www.issep.rssi.ru
- 2. Project "Ramler-science" natural sciences http://www.nature_ru_3. Electronic version of the journal "Science" http://www.sciencemag_org
 - * All teaching materials for self-studding of students are placed in accordance with the current procedure on the discipline page in the RUDN LMS TUIS.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATIONOF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

Evaluation materials and point-rating system* for assessing the level of competence formation (GPC-8) based on the results of mastering the discipline "**Physics**" are presented in the Appendix to this Work Program of the discipline.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor of the SEIPRT		S. P. Karnilovich
Job title, educational department	Sign	First name and Surname
assistant of the SEIPRT		I.E. Kaspirovich
Job title, educational department	Sign	First name and Surname

HEAD OF THE DEPARTMENT:

Acting HEAD of the SEIPRT		N.Yu.Kravchenko	
Job title of the educational department	First name and Surname		
HEAD OF THE PROGRAMME:			
Deputy Director of MI in the			
specialty Dentistry		S.N. Razumova	
Job title, educational department	Sign	First name and Surname	