Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чосударственное автономное образовательное учреждение высшего образования Должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 21.05.2025 08:29:16

Уникальный программный ключ:

ca953a0120d891083f93967307

Инженерная академия

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

21.05.02 ПРИКЛАДНАЯ ГЕОЛОГИЯ

(код и наименование направления подготовки/специальности)

ДИСШИПЛИНЫ велется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

ГЕОЛОГИЧЕСКАЯ СЪЕМКА, ПОИСКИ И РАЗВЕДКА МЕСТОРОЖДЕНИЙ ТВЕРДЫХ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Сопротивление материалов» входит в программу специалитета «Геологическая съемка, поиски и разведка месторождений твердых полезных ископаемых» по направлению 21.05.02 «Прикладная геология» и изучается в 4 семестре 2 курса. Дисциплину реализует Базовая кафедра «Машиностроительные технологии». Дисциплина состоит из 10 разделов и 48 тем и направлена на изучение методов расчета элементов конструкций на прочность, жесткость и устойчивость

Целью освоения дисциплины является приобретение навыков по расчету элементов конструкций на прочность и жесткость при простых видах деформаций, сложном сопротивлении и по расчету центрально-сжатых стержней на устойчивость; умение анализировать результаты своих расчетов и делать по ним правильные выводы и заключения; проведение первых экспериментальных исследований в лабораторных условиях по определению механических характеристик материалов и проверке гипотез используемых в сопротивлении материалов

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Сопротивление материалов» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)	
	Способен осуществлять	УК-1.1 Анализирует задачу, выделяя ее базовые	
	критический анализ	составляющие;	
УК-1	проблемных ситуаций на	УК-1.2 Осуществляет поиск информации для решения	
3 K-1	основе системного подхода,	поставленной задачи по различным типам запросов;	
	вырабатывать стратегию	УК-1.3 Предлагает варианты решения задачи, анализирует	
	действий	возможные последствия их использования;	
	Способен решать задачи,		
	относящиеся к	ОПК-УГСН-1.1 Знает положения фундаментальных физико-	
	профессиональной	математических, естественных наук и основы	
ОПК-УГСН-	деятельности, применяя методы	общеинженерных знаний;	
1	моделирования,	ОПК-УГСН-1.2 Умеет использовать базовые знания в области	
	математического анализа,	математики, физики, химии, естественнонаучных и	
	естественнонаучные и	общеинженерных дисциплин при решении инженерных задач;	
	общеинженерные знания		

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Сопротивление материалов» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Сопротивление материалов».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
	Способен осуществлять	Электротехника;	
	критический анализ	Теоретическая механика;	
УК-1	проблемных ситуаций на	Химия;	
y K-1	основе системного	Физика;	
	подхода, вырабатывать	Высшая математика;	
	стратегию действий		
	Способен решать задачи,	Инженерная графика;	
	относящиеся к	Электротехника;	
	профессиональной	Теоретическая механика;	
ОПК-	деятельности, применяя	Химия;	
УГСН-1	методы моделирования,	Физика;	
	математического анализа,	Высшая математика;	
	естественнонаучные и	Цифровая грамотность;	
	общеинженерные знания		

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Сопротивление материалов» составляет «3» зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dur vinofinoŭ poforti	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			4	
Контактная работа, ак.ч.	51		51	
Лекции (ЛК)	17		17	
Лабораторные работы (ЛР)	0		0	
Практические/семинарские занятия (СЗ)	34		34	
Самостоятельная работа обучающихся, ак.ч.	48		48	
Контроль (экзамен/зачет с оценкой), ак.ч.	9		9	
Общая трудоемкость дисциплины	ак.ч.	108	108	
	зач.ед.	3	3	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	ие дисциплины (модуля) по видам учебной работы Содержание раздела (темы)		Вид учебной работы*	
риздени	диецинины				
Раздел 1	Введение	1.1	Введение в сопротивление материалов. Основные понятия: перемещения, деформации, упругость, пластичность.	ЛК	
		1.2	Виды материалов. Гипотезы. Внутренние усилия. Метод сечений. Напряжения.	ЛК, ЛР	
	T.	2.1	Основные понятия. Главные центральные оси.	ЛК, СЗ	
Раздел 2	Геометрические характеристики плоских	2.2	Моменты инерции при параллельном переносе осей и повороте осей.	ЛК, ЛР, СЗ	
	сечений бруса	2.3	Моменты инерции простых сечений.	ЛК, ЛР	
		3.1	Продольные силы их эпюры. Напряжения и деформации. Закон Гука. Перемещения. Напряжения на наклонной площадке.	ЛК	
Раздел 3	Растяжение и сжатие.	3.2	Потенциальная энергия упругой деформации. Диаграмма растяжения мягкой углеродистой стали.	ЛК, ЛР	
		3.3	Характеристики прочности и пластичности. Условие прочности при растяжении (сжатии). Типы решаемых задач.	ЛК, СЗ	
		3.4	Статически неопределимые системы. Расчет на силовые, температурные и монтажные воздействия.	ЛК	
Раздел 4		4.1	Виды напряженного состояния. Напряжения на наклонных площадках при объёмном и плоском напряженном состоянии.	ЛК, ЛР, СЗ	
	T	4.2	Круг напряжений О. Мора	ЛК	
	Теория напряженного состояния и теории прочности	4.3	Обобщенный закон Гука. Потенциальная энергия при сложном напряженном состоянии. Энергия изменения объёма и формы.	ЛК, ЛР	
		4.4	Классические теории прочности при сложном напряженном состоянии. Понятие о новых теориях прочности	ЛК	
		5.1	Чистый сдвиг. Напряжения. Деформации.	ЛК	
Раздел 5	Сдвиг	5.2	Закон Гука при чистом сдвиге. Зависимость между модулем сдвига и модулем нормальной упругости.	ЛК, ЛР	
		5.3	Расчеты на прочность.	ЛК	
		6.1	Крутящие моменты и их эпюры. Деформации и напряжения.	ЛК, СЗ	
		6.2	Формула касательных напряжений.	ЛК, ЛР, СЗ	
Раздел 6	Кручение	6.3	Условие прочности	ЛК, СЗ	
		6.4	Закон Гука при кручении. Условие жесткости вала при кручении.	ЛК	
		6.5	Главные напряжения при кручении. Статически неопределимые валы при кручении	ЛК, ЛР	
		7.1	Внутренние усилия при плоском изгибе	ЛК, СЗ	
	Плоский изгиб прямых стержней (часть 1)	7.2	Дифференциальные зависимости между M, Q,q.	ЛК	
		7.3	Построение эпюр внутренних усилий в балка и статически определимых рамах.	ЛК	
		7.4	Построение эпюр внутренних усилий в статически определимых рамах	ЛК	
		7.5	Чистый изгиб. Напряжения. Эпюра напряжений о. Условие прочности. Типы решаемых задач	ЛК	
		7.6	Касательные напряжения при изгибе. Эпюры	ЛК	
		7.7	Условие прочности по касательным	ЛК, ЛР	

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
			напряжениям	
		7.0	Понятие о центре изгиба. Главные напряжения	шс
		7.8	при изгибе. Траектории главных напряжений	ЛК
		7.9	Исследование напряженного состояния балок.	ЛК
		7.10	Подбор сечения балок с полной проверкой прочности	ЛК
		7.11	Расчет балок при неупругом поведении материала в рамках идеальной пластичности.	ЛК
		8.1	Перемещения при изгибе. Метод непосредственного интегрирования дифференциального уравнения изогнутой оси балки.	ЛК, ЛР
		8.2	Метод начальных параметров при определении перемещений в балках. Условие жесткости балок.	
	- v -	8.3	Теоремы Бетти и Максвелла. Формула О. Мора.	ЛК
Раздел 8	Плоский изгиб прямых стержней (часть 2)	8.4	Правило Верещагина по определению перемещений в балках и рамах.	ЛК, ЛР
		8.5	Простейшие статически неопределимые балки. Метод уравнивания перемещений	ЛК, ЛР
		8.6	Балки на упругом основании. Гипотезы. Диф. уравнение и его решение. Бесконечно длинные балки.	
		8.7	Расчет коротких балок на упругом основании методом начальных параметров	ЛК
	Сложное сопротивление	9.1	Растяжение (сжатие) с изгибом. Косой изгиб. Внутренние усилия. Напряжения. Условие прочности. Перемещения при косом изгибе	ЛК
		9.2	Напряжения. Условие прочности. Перемещения при косом изгибе. Внецентренное растяжение (сжатие). Внутренние усилия. Напряжения. Эпюры. Условие прочности. Типы задач.	ЛК, СЗ
Раздел 9		9.3	Внецентренное растяжение (сжатие). Примеры решения задач. Поведение нейтральной линии при изменении положения точки приложения нагрузки. Построение ядра сечения.	ЛК, ЛР
		9.4	Совместное действие изгиба и кручения. Расчет на прочность. Расчет цилиндрической винтовой пружины при растяжении на прочность и жесткость	ЛК, ЛР
		9.5	Пример расчета вала на прочность при изгибе с кручением. Расчет цилиндрической винтовой пружины при растяжении на прочность и жесткость.	ЛК
	Устойчивость центрально-сжатых стержней	10.1	Продольно-поперечный изгиб. Метод начальных параметров. Условие прочности	ЛК, ЛР
Раздел 10		10.2	Приближенный метод расчета на продольно- поперечный изгиб. Пример расчета балки приближенным методом на продольно- поперечный изгиб.	ЛК, СЗ
		10.3	Формы равновесия упругих систем. Критическая сила. Устойчивость по Эйлеру и Ясинскому. Условие устойчивого равновесия. Подбор сечения стоек	ЛК
		10.4	Примеры решения задач на устойчивость центрально сжатых стержней.	ЛК

^{*} - заполняется только по $\underline{\mathbf{OYHOЙ}}$ форме обучения: JK – лекции; JP – лабораторные работы; C3 – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Лаборатория	Аудитория для проведения лабораторных работ, индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и оборудованием.	Система тензометрирования К732, разрывная машина Р20, лабораторные установки для испытаний балок в условиях чистого и косого изгиба
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Межецкий Г.Д. Сопротивление материалов / М.: Дашков и К, 2016
- 2. Гильман А.А. Сопротивление материалов / Саратовский государственный технический университет имени Ю.А. Гагарина, 2012
- 3. Копнов В.А., Кривошапко С.Н. Сопротивление материалов / М: Высшая школа, 2005

Дополнительная литература:

- 1. Феодосьев В.И. Десять лекций-бесед по сопротивлению материалов / М.: Наука, 1969
 - 2. Кривошапко С.Н. Техническая механика / М: РУДН, 2013
- 3. Писаренко Г.С. Справочник по сопротивлению материалов / К: Научная мысль, 2004

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Сопротивление материалов».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

Доцент кафедры Ольфати Рахмануддин машиностроительных технологий Садруддин Должность, БУП Фамилия И.О. Подпись РУКОВОДИТЕЛЬ БУП: Заведующий кафедрой машиностроительных Боронина Людмила технологий Владимировна Должность БУП Фамилия И.О. Подпись

РАЗРАБОТЧИК:

РУКОВОДИТЕЛЬ ОП ВО:

Заведующий кафедрой недропользования и Котельников Александр нефтегазового дела Евгеньевич Должность, БУП Подпись Фамилия И.О.