Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чтосударственное автономное образовательное учреждение высшего образования Должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 21.05.2025 10:30:23

Уникальный программный ключ:

ca953a0120d891083f93967307

Инженерная академия

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ВВЕДЕНИЕ В НАНОТЕХНОЛОГИИИ И МИКРОСИСТЕМНУЮ ТЕХНИКУ

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

28.03.02 НАНОИНЖЕНЕРИЯ

(код и наименование направления подготовки/специальности)

ДИСШИПЛИНЫ велется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

НАНОТЕХНОЛОГИИ И НАНОМАТЕРИАЛЫ В ПРИБОРОСТРОЕНИИ

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Введение в нанотехнологиии и микросистемную технику» входит в программу бакалавриата «Нанотехнологии и наноматериалы в приборостроении» по направлению 28.03.02 «Наноинженерия» и изучается в 1, 2 семестрах 1 курса. Дисциплину реализует Базовая кафедра «Нанотехнологии и микросистемная техника». Дисциплина состоит из 8 разделов и 29 тем и направлена на изучение основ наноинженерии и нанотехнологий.

Целью освоения дисциплины является ознакомление слушателей с расширенным представлением о сфере наноинженерии и нанотехнологий, представление основных объектов исследований наноинженерии и нанотехнологий, их классификации, описание основных методов и подходов при их создании, модификации и исследованиях.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Введение в нанотехнологиии и микросистемную технику» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ОПК-1	Способен решать задачи профессиональной деятельности на основе применения естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования Способен принимать обоснованные технические решения в профессиональной деятельности, выбирать эффективные и безопасные	ОПК-1.1 Знает методы математического анализа и моделирования в области наноинженерии; ОПК-1.2 Умеет выявлять естественно-научную сущность проблем в области наноинженерии и новых междисциплинарных направлений, руководствуясь законами и методами естественных наук и математики; ОПК-5.1 Знает эффективные и безопасные технические средства и технологии в области наноинженерии; ОПК-5.2 Умеет принимать обоснованные технические
	технические средства и технологии	решения в профессиональной деятельности;
ПК-12	Способен осуществлять организацию разработки технических описаний на отдельные функциональные блоки микроэлектромеханической системы	ПК-12.1 Знает методы организации разработки технических описаний на отдельные функциональные блоки микроэлектромеханической системы; ПК-12.2 Владеет навыками организации разработки технических описаний на отдельные функциональные блоки микроэлектромеханической системы;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Введение в нанотехнологиии и микросистемную технику» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению

запланированных результатов освоения дисциплины «Введение в нанотехнологиии и микросистемную технику».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-1	Способен решать задачи профессиональной деятельности на основе применения естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования		Высшая математика; Основы надежности технических систем; Прикладная оптика и оптические измерения; Математические методы в инженерных приложениях; Сопротивление материалов; Научно-исследовательская работа (получение первичных навыков научно- исследовательской работы); Технологическая практика; Преддипломная практика; Научно-исследовательская работа;
ОПК-5	Способен принимать обоснованные технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства и технологии		Основы проектирования лазеров; Физические основы микрои наноэлектроники; Основы физики твердого тела в наноинженерии; Сопротивление материалов; Научно-исследовательская работа (получение первичных навыков научноисследовательской работы); Технологическая практика; Преддипломная практика; Технологическая практика (учебная); Научно-исследовательская работа;
ПК-12	Способен осуществлять организацию разработки технических описаний на отдельные функциональные блоки микроэлектромеханической системы		Основы наноустройств; Научно-исследовательская работа (получение первичных навыков научно- исследовательской работы); Технологическая практика; Преддипломная практика; Технологическая практика (учебная);

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

^{** -} элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Введение в нанотехнологиии и микросистемную технику» составляет «4» зачетные единицы. Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dur yunduni padagu	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			1	2
Контактная работа, ак.ч.	53		36	17
Лекции (ЛК)	35		18	17
Лабораторные работы (ЛР)	0		0	0
Практические/семинарские занятия (СЗ)	18		18	0
Самостоятельная работа обучающихся, ак.ч.	73		18	55
Контроль (экзамен/зачет с оценкой), ак.ч.	18		18	0
Общая трудоемкость дисциплины	ак.ч.	144	72	72
	зач.ед.	4	2	2

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	с оисциплины (мооуля) по виоам учеонои расоты Содержание раздела (темы)		Вид учебной работы*	
	Введение.	1.1	Наноинженерия и нанотехнологии, как область научных исследований и практическое её применение	ЛК	
Раздел 1	Наноинженерия и нанотехнологии	1.2 Основные объекты исследований наноинженерии и нанотехнологий		ЛК	
		1.3	1.3 Классификация объектов наноинженерии. Примеры		
Раздел 2	Выдающиеся лидеры профессии и их вклад в развитие отрасли	2.1	Российские «пионеры» профессии и отрасли (имена, регалии, основные достижения и наследие)	ЛК	
		2.2	Современии в поссийские пилеры профессии и		
		2.3	Встреча студентов с выдающимся российским лидером из отрасли	ЛК	
		3.1	Определение термина «наноматериалы». Классификация наноматериалов	ЛК	
		3.2	Общие свойства нанообъектов и наноматериалов	ЛК	
Раздел 3	Наноматериалы	3.3	Индивидуальные наночастицы. Определение. Виды частиц. Металлические, полупроводниковые наночастицы, газовые молекулярные кластеры. Их свойства	ЛК	
		3.4	Углеродные наноструктуры Нанообъекты на основе углерода. Описание особенностей углеродной связи. Углеродные кластеры. Углеродные нанотрубки. Строение, свойства	ЛК	
		3.5	Объемные наноструктурированные материалы. Объемные нанообъекты	ЛК	
		4.1	Примеры индивидуальных наночастиц	СЗ	
D 4	Примеры использования	4.2	Применение углеродных нанотрубок	СЗ	
Раздел 4	наноматериалов	4.3	Применение объемных наноструктурированных материалов	СЗ	
	Методы исследований и контроля в наноинженерии	5.1	Ограничения возникающие при исследованиях нанобъектов и наномасштабов	ЛК	
		5.2	Оптические методы исследований	ЛК	
Раздел 5		5.3	Электронные методы исследований	ЛК	
		5.4	Зондовые методы исследований	ЛК	
		5.5	Спектральные методы исследований	ЛК	
Раздел 6	Примеры применения методов нанодиагностики	6.1	Примеры исследований методами проствечивающей и сканирующей электронной микроскопии	СЗ	
		6.2	Примеры исследований зондовыми методами Примеры исследований спеткральными	C3	
			методами		
Раздел 7	Методы и технологии	7.1	Механосинтез нанообъектов	ЛК	
	создания и модификации	7.2	Химические методы нанообъектов	ЛК	
	объектов в	7.3	Вакуумные методы получения нанообъектов	ЛК	
	наноинженерии	7.4	Методы наноструктурирования	ЛК	
Раздел 8	Примеры использования технологических	8.1	Примеры синтеза нанообъектов механическими методами	СЗ	
т аздел о	процессов синтеза	8.2	Примеры получения нанопленок	C3	
	наноматериалов	8.3	Примеры использования наноструктурирования	C3	

^{*} - заполняется только по ${\bf \underline{OYHOЙ}}$ форме обучения: ${\it ЛK}$ – ${\it лекции}$; ${\it ЛP}$ – ${\it лабораторные работы}$; ${\it C3}$ – ${\it практические/семинарские занятия}$.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Нанотехнологии в электронике. Введение в специальность. Учебное пособие. Лозовский В.Н., Лозовский С. В.: Лань, 2024 г. ISBN: 978-5-507-47532-2
- 2. Физические основы нанотехнологий и наноматериалы. Учебное пособие. Смирнов В.И.: Инфра-Инженерия, 2023 г. ISBN: 978-5-9729-1246-9
- 3. Введение в нанотехнологию (Серия: Радиоэлектроника и приборостроение), Марголин В.И., Жабрев В. А., Лукьянов Г. Н.:Лань, 2021 г., ISBN: 978-5-8114-1318-8
- 4. Юрчук, С. Ю. Приборы квантовой и оптической электроники. Светоизлучающие и лазерные структуры. Курс лекций : учебное пособие / С. Ю. Юрчук, М. П. Коновалов. Москва : МИСИС, 2020. 92 с.
- 5. Игнатов, А. Н. Оптоэлектроника и нанофотоника : учебное пособие / А. Н. Игнатов. 4-е изд., стер. Санкт-Петербург : Лань, 2020. 596 с. ISBN 978-5-8114-5149-4

Дополнительная литература:

- 1. Нано- и микросистемная техника. От исследований к разработкам Сборник статей под редакцией П.П. Мальцева М.:Техносфера, 2005 592 с.
 - 2. Пономарёв А.Н. Вопросы материаловедения, 2, 26, 65 (2001)
 - 3. Ч.Пул, Ф.Оуэнс. Нанотехнологии. М.: Техносфера, 2004. 328 с.
 - 4. П.Харрис. Углеродные нанотрубы и родственные структуры. Новые материалы

- 21 века. М.: Техносфера, 2003. -336 с.
- 5. R.P. Anders et al. "Research Opportunities in clusters and Cluster Assembled Materials", J. Matter. Res.4, 704 (1989)
- 6. H.S. Nalwa, ed., Handbook of nanostructured Materials and Nanotechnology, Vol.5 Organic Polymers and Biological Compounds, Academic Press, Boston, 2000 Ресурсы информационно-телекоммуникационной сети «Интернет»:
- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Введение в нанотехнологиии и микросистемную технику».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

РАЗРАБОТЧИК:

		Макеев Мстислав
Доцент		Олегович
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП:		
Заведующий кафедрой		Попов Сергей Викторович
Должность БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:		
		Макеев Мстислав
Доцент		Олегович
Должность, БУП	Подпись	Фамилия И.О.