Документ подписан простой электронной подписью Информация о владфеферальное государ ственное автономное образовательное учреждение ФИО: Ястребов Олег Александрович высшего образования Должность: Ректор дата подписания: 29% В ресийский университет дружбы народов имени Патриса Лумумбы»

Уникальный программный ключ:

ca953a0<u>120d8</u>91083f939673078ef1a989dae18a

Инженерная академия

(наименование основного учебного подразделения (ОУП) – разработчика ОП ВО)

ПРОГРАММА ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ

Рекомендована МССН для направления подготовки/специальности:

28.04.01 Нанотехнологии и микросистемная техника

(код и наименование направления подготовки/специальности)

Государственная итоговая аттестация проводится в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

Инженерно-физические технологии в наноиндустрии

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ПРОВЕДЕНИЯ И ЗАДАЧИ ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ (ГИА)

Целью проведения ГИА в рамках реализации ОП ВО «Инженерно-физические технологии в наноиндустрии» является определение соответствия результатов освоения обучающимися ОП ВО соответствующим требованиям ОС ВО РУДН.

Задачами государственной итоговой аттестации являются:

- проверка качества обучения личности основным гуманитарным знаниям, естественнонаучным законам и явлениям, необходимым в профессиональной деятельности;
- определение уровня теоретической и практической подготовленности выпускника к выполнению профессиональных задач в соответствии с получаемой квалификацией;
- установление степени стремления личности к саморазвитию, повышению своей квалификации и мастерства;
- проверка сформированности у выпускника устойчивой мотивации к профессиональной деятельности в соответствии с предусмотренными ОС ВО РУДН типами задач профессиональной деятельности;
- оценка уровня способности выпускников находить организационноуправленческие решения в нестандартных ситуациях и готовности нести за них ответственность;
- обеспечение интеграции образования и научно-технической деятельности, повышение эффективности использования научно-технических достижений, реформирование научной сферы и стимулирование инновационной деятельности;
- обеспечение качества подготовки специалистов в соответствии с требованиями ОС ВО РУДН.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ОП ВО

К ГИА допускается обучающийся, не имеющий академической задолженности и в полном объеме выполнивший учебный план или индивидуальный учебный план ОП ВО.

По окончанию освоения ОП ВО выпускник должен обладать следующими **универсальными компетенциями** (УК):

Код и наименование УК

- УК-1. Способен осуществлять поиск, критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий.
- УК-2. Способен управлять проектом на всех этапах его жизненного цикла.
- УК-3. Способен организовывать и руководить работой команды, вырабатывая командную стратегию для достижения поставленной цели.
- УК-4. Способен применять современные коммуникативные технологии на государственном языке Российской Федерации и иностранном(ых) языке(ах) для академического и профессионального взаимодействия.
- УК-5. Способен анализировать и учитывать разнообразие культур в процессе межкультурного взаимодействия.
- УК-6. Способен определить и реализовать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки.

УК-7. Способен:

искать нужные источники информации и данные, воспринимать, анализировать, запоминать и передавать информацию с использованием цифровых средств, а так-же с помощью алгоритмов при работе с полученными из различных источников данными с целью эффективного

Код и наименование УК

использования полученной информации для решения задач;

проводить оценку информации, ее достоверность, строить логические умозаключения на основании поступающих информации и данных.

- общепрофессиональными компетенциями (ОПК):

Код и наименование ОПК

- ОПК-1. Способен ставить и решать инженерные и научно-технические задачи в области нанотехнологий и микросистемной техники и новых междисциплинарных направлениях на основе естественнонаучных и математических моделей.
- ОПК-2. Способен управлять профессиональной и иной деятельностью на основе применения знаний проектного и финансового менеджмента.
- ОПК-3. Способен управлять жизненным циклом создания инженерных продуктов в области нанотехнологий и микросистемной техники с учетом экономических, экологических, социальных и других ограничений.
- ОПК-4. Способен выполнять исследования при решении инженерных и научно-технических задач, включая планирование и постановку сложного эксперимента, критическую оценку и интерпретацию результатов.
- ОПК-5. Способен использовать инструментарий формализации инженерных, научнотехнических задач, прикладное программное обеспечение для моделирования и проектирования объектов, систем и процессов.
- ОПК-6. Способен демонстрировать социальную ответственность за принимаемые решения, учитывать правовые и культурные аспекты, обеспечивать устойчивое развитие при ведении профессиональной и иной деятельности.
- ОПК-7. Способен разрабатывать и актуализировать научно-техническую документацию в области нанотехнологий и микросистемной техники.

- профессиональными компетенциями (ПК):

Код и наименование ПК

- ПК-1 Готовность формулировать цели и задачи научных исследований в области нанотехнологии и микросистемной техники, обоснованно выбирать теоретические и экспериментальные методы и средства решения сформулированных задач
- ПК-2 Готовность разрабатывать методики проведения исследований и измерений параметров и характеристик изделий нанотехнологии и микросистемной техники, анализировать их результаты
- ПК-3 Готовность разрабатывать физические и математические модели, проводить компьютерное моделирование исследуемых физических процессов в области нанотехнологии и микросистемной техники
- ПК-4 Готовность выполнять научно-технические отчеты, доклады, публикации по результатам выполненных исследований, а также оформлять заявки на защиту объектов интеллектуальной собственности
- ПК-5 Способность разрабатывать технологии изготовления наноструктурированных покрытий с заданными свойствами и проводить исследования их характеристик
- ПК-6 Способность выполнять подготовку конструкторской документации для запуска в производство и разрабатывать методики испытаний, контроля и отбраковки наногетероструктурных элементов и устройств на их основе
- ПК-7 Способность разрабатывать современные технологические процессы изготовления наноэлектронных изделий
- ПК-8 Способность разрабатывать новые технологические процессы производства микро- и наноразмерных электромеханических систем

3. СОСТАВ ГИА

ГИА может проводится как в очном формате (обучающиеся и государственная экзаменационная комиссия во время проведения ГИА находятся в РУДН), так и с использованием дистанционных образовательных технологий (ДОТ), доступных в Электронной информационно-образовательной среде РУДН (ЭИОС).

Порядок проведения ГИА в очном формате или с использованием (ДОТ) регламентируется соответствующим локальным нормативным актом РУДН.

ГИА по ОП ВО «Инженерно-физические технологии в наноиндустрии» включает в себя:

- государственный экзамен (ГЭ);
- защиту выпускной квалификационной работы (ВКР).

4. ПРОГРАММА ГЭ

Объем ГЭ по ОП ВО составляет 3 зачетные единицы.

Государственный экзамен по образовательной программе «Инженернофизические технологии в наноиндустрии» по направлению 28.04.01 «Нанотехнологии и микросистемная техника» проводится в два этапа:

- этап первый компьютерное тестирование (тестовая часть);
- этап второй основная часть.

Целью тестовой части государственного экзамена является оценка уровня теоретической подготовки выпускника по материалу дисциплин/модулей образовательной программы. В тестовом задании содержится 50 вопросов. На выполнение тестового задания студенту отводится 100 минут.

Основная часть государственного экзамена проводится в письменной форме с использованием экзаменационных билетов. Каждый экзаменационный билет содержит три вопроса.

Вопросы, включаемые в экзаменационный билет, имеют междисциплинарный характер и направлены на определение уровня теоретической и практической подготовленности выпускника к решению профессиональных задач, определенных образовательным стандартом РУДН в соответствии с видом/видами профессиональной деятельности, на который/которые ориентирована образовательная программа.

Общее количество экзаменационных билетов определяется числом студентов, допущенных к прохождению государственного экзамена. На подготовку и защиту письменного ответа по билету студенту отводится 180 минут.

На государственном экзамене членами ГЭК студенту могут быть заданы дополнительные вопросы в области профессиональной деятельности выпускника, предусмотренной образовательным стандартом.

Оценивание результатов сдачи ГЭ проводится в соответствии с методикой, изложенной в оценочных материалах, представленных в Приложении к настоящей программе ГИА.

5. ТРЕБОВАНИЯ К ВКР И ПОРЯДОК ЕЁ ЗАЩИТЫ

ВКР представляет собой выполненную обучающимся (либо несколькими обучающимися совместно при выполнении проекта) работу, демонстрирующую уровень подготовленности выпускника/выпускников к самостоятельной профессиональной деятельности.

Перечень тем выпускных квалификационных работ, предлагаемых обучающимся к выполнению, утверждается распоряжением руководителя ОУП, реализующего ОП

ВО, и доводится руководителем программы до сведения обучающихся выпускного курса не позднее чем за 6 месяцев до даты начала ГИА.

Допускается подготовка и защита ВКР по теме, предложенной обучающимся (обучающимися), в установленном порядке.

К защите ВКР допускается обучающийся, сдавший ГЭ.

К защите допускается только полностью законченная ВКР, подписанная выпускником (выпускниками), её выполнившим, руководителем, консультантом (при наличии), руководителем выпускающего БУП и ОУП, прошедшая процедуру внешнего рецензирования (для магистратуры и специалитета обязательно) и проверку на объём заимствований (в системе «Антиплагиат»). К ВКР, допущенной до защиты, в обязательном порядке прикладывается отзыв руководителя о работе выпускника при подготовке ВКР.

С целью выявления и своевременного устранения недостатков в структуре, содержании и оформлении ВКР, не позднее чем за 14 дней до даты её защиты, проводится репетиция защиты обучающимися своей работы (предзащита) в присутствии руководителя ВКР и других преподавателей выпускающего БУП (комиссия БУП).

В случае, если ВКР имеет существенные недостатки, то комиссия БУП может принять решение о недопуске обучающегося к защите ВКР. При этом обучающемуся предоставляется 7 дней на исправление замечаний, а комиссия принимает решение о проведении повторной предзащиты, по итогам которой принимается решение о допуске или недопуске в защите ВКР обучающегося.

Защита ВКР проводится на открытом заседании государственной экзаменационной комиссии (ГЭК).

Аттестационное испытание проводится в виде устного доклада обучающихся с обязательной мультимедийной (графической) презентацией, отражающей основное содержание ВКР.

По завершению доклада защищающиеся дают устные ответы на вопросы, возникшие у членов ГЭК по тематике, структуре, содержанию или оформлению ВКР и профилю ОП ВО. Доклад и/или ответы на вопросы членов ГЭК могут быть на иностранном языке.

Этапы выполнения ВКР, требования к структуре, объему, содержанию и оформлению, а также перечень обязательных и рекомендуемых документов, представляемых к защите указаны в соответствующих методических указаниях.

Оценивание результатов защиты ВКР проводится в соответствии с методикой, изложенной в оценочных материалах, представленных в Приложении к настоящей программе ГИА.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОВЕДЕНИЯ ГИА

Для подготовки к государственному экзамену и защите ВКР обучающиеся пользуются помещениями для самостоятельной работы.

Для проведения государственного экзамена необходима учебная аудитория, оборудованная рабочими местами с персональными компьютерами (не менее 12-ти), оснащенными необходимым программным обеспечением и подключением к сети «Интернет».

Для проведения защиты ВКР необходимо помещение, вместимостью от 12 и более человек, в котором оборудованы рабочие места для всех членов ГЭК, с возможностью выслушивать доклады, просматривать публичные презентации выступающих, вести записи и протоколы, имеются места для слушателей, желающих присутствовать на процедуре защиты ВКР. В состав необходимого оборудования помещения входит:

- аппаратура для публичных презентаций результатов ВКР, включающая в себя мультимедийный экран, проектор, аудиоаппаратуру.
 - доска для иллюстрации ответов на вопросы;
- планшеты/стенды формата не менее чем A1 (при необходимости), для размещения на них графической части ВКР.

О пожеланиях к дополнительному материально-техническому оснащению (при необходимости) аудитории, назначенной для защиты ВКР, студент может известить выпускающий департамент письменным заявлением не позднее, чем за неделю до проведения процедуры защиты.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ГИА

Основная литература для подготовки к Γ \ni и/или выполнению и защите BKP:

- 1. Каменев, С.В. Технологии аддитивного производства / С.В. Каменев, К.С. Романенко; Министерство образования и науки Российской Федерации, Оренбургский Государственный Университет. Оренбург: Оренбургский государственный университет, 2017. 145 с.: ил. Библиогр. в кн. ISBN 978-5-7410-1696-1. Текст: электронный. http://biblioclub.ru/index.php?page=book red&id=481769&sr=1
- 2. Нано- и микросистемная техника. От исследований к разработкам. Сборник статей. Под редакцией Мальцева П.П. Москва: Техносфера, 2005. 592 с. https://www.technosphera.ru/lib/book/125?read=1
- 3. Материаловедение: методы исследования структуры и состава материалов: учебное пособие для академического бакалавриата / Э. В. Суворов. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2019. 180 с. (Высшее образование). ISBN 978-5-534-06011-9; Режим доступа: https://www.biblio-online.ru/bcode/438493
- 4. Шишмарёв, В. Ю. Надежность технических систем :учебник для вузов / В. Ю. Шишмарёв. —2-е изд., испр. и доп. —Москва : Издательство Юрайт, 2021. —289 с. (Высшее образование). —ISBN 978-5-534-09368-1. —Текст : электронный // ЭБС Юрайт [сайт]. —URL: https://urait.ru/bcode/473175
- 5. Нанотехнологии в электронике : монография. Вып. 3 / Под ред. Ю.А.Чаплыгина. М. : Техносфера, 2015. 480 с. : ил. ISBN 978-5-94836-422-3 : 0.00.
- 6. Кондрашин А.А., Лямин А.Н., Слепцов В.В. Современные технологии изготовления трехмерных электронных устройств: Учеб. пособие. М.: Техносфера, 2019. $210 \, \mathrm{c}$.
- 7. Технология тонких пленок и покрытий: учебное пособие / Л. Н. Маскаева, Е. А. Федорова, В. Ф. Марков; под общей редакцией Л. Н. Маскаевой; Министерство образования и науки Российской Федерации, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина. Екатеринбург: Издательство Уральского университета, 2019. 236 с. ISBN 978-5-7996-2560-3.

Дополнительная литература для подготовки к Γ \ni и/или выполнению и защите BKP:

1. Чинакал В.О. Компьютерные технологии управления в технических системах [Текст/электронный ресурс]: Учебно-методический комплекс / В.О. Чинакал. - Электронные текстовые данные. - М.: Изд-во РУДН, 2013. - 212 с. - ISBN 978-5-209-

05005-6: 267.14.

http://lib.rudn.ru/MegaPro/UserEntry?Action=Rudn FindDoc&id=403193&idb=0

- 2. Гайдук Ю. С., Савицкий А. А., Реутская О. Г., Таратын И. А. Полупроводниковые газовые датчики на основе композиции оксида вольфрама и оксида индия // Нано- и микросистемная техника. Том 20. № 4 С.232 (2018).
- 3. Илюшин, А. С. Дифракционный структурный анализ в 2 ч. Часть 2 : учебное пособие для вузов / А. С. Илюшин, А. П. Орешко. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 299 с. (Авторский учебник). ISBN 978-5-534-04324-2; Режим доступа: https://www.biblio-online.ru/bcode/438750
 - 4. ГОСТ 27.ххх-хх «Надежность в технике».
- 5. Актуальные проблемы современной нанотехнологии : учебно-методический комплекс / Г.Г. Малинецкий. Электронные текстовые данные. М. : Изд-во РУДН, 2013. 168 с. ISBN 978-5-209-05034-6 : 230.62.
- 6. Мочалкина О.Р.;Березин А.С. Технология и конструирование интегральных микросхем: Учеб. пособие для вузов, Березин А.С., Мочалкина О.Р., М., Радио и связь, 1992.
- 7. Эвелина Никельшпарг. Спектроскопия КР: новые возможности старого метода. 2015. https://biomolecula.ru/articles/spektroskopiia-kr-novye-vozmozhnosti-starogo-metoda

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Лань» http://e.lanbook.com/
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.entd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
- реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/

Программное обеспечение:

- 1. Специализированное программное обеспечение для проведения тестовой части государственного экзамена и самостоятельной работы студентов:
 - Ментор

Учебно-методические материалы для самостоятельной работы обучающихся при подготовке к сдаче Γ у и/или выполнении BKP и подготовке работы к защите *:

- 1. Порядок проверки ВКР на объём заимствований в системе «Антиплагиат».
- 2. Порядок проведения ГИА по ОП ВО «Инженерно-физические технологии в наноиндустрии» с использованием ДОТ, в т.ч. процедура идентификации личности выпускника.
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице ГИА <u>в ТУИС</u>!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ У ВЫПУСКНИКОВ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций по итогам освоения дисциплины ОП ВО «Инженернофизические технологии в наноиндустрии» представлены в Приложении к настоящей программе ГИА.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН (положения/порядка).

РУКОВОДИТЕЛЬ ВЫПУСКАЮЩЕГО Заведующий кафедрой, Кафедра	ЭБУП:
«Нанотехнологии и микроси-	С.В. Попов
стемная техника»	
Наименование БУП	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:	
Доцент, Кафедра «Нанотехноло-	С.В. Агасиева
гии и микросистемная техника»	C.D. AI acheba
Должность, БУП	Фамилия И.О.