Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребов Олег Александей Pederal State Autonomous Educational Institution of Higher Education должность: Ректор Дата подписания: 03.06.2024 11:16:45

Уникальный программный ключ:

ca953a0120d891083f939673078ef1a989dae18a

RUDN University Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

01.04.01 Mathematics / Functional methods in differential equations and interdisciplinary research

C T'41-	F
Course Title	"Foreign (Russian) language in professional
	activity"
Course Workload	6/216
Course	contents
Course Module Title	Brief Description of the Module Content
Section 1. Practical grammar of Russian as a	Topic 1.1. Parts of speech: definition of the
foreign language. Scientific style of speech	part of speech to which the word refers;
	restoration of the original form of the word;
	definition of the semantic group of nouns
	(subject, person, process, property, relation)
	Topic 1.2. Sentence model: subject and its
	characteristics; person and his actions; object
	and its property; the subject and its procedural
	sign; the presence / absence of an object in a
	given place
	green place
Section 2. Scientific style: secondary ways of	Topic 2.1. Scientific style: secondary ways of
designating the situation and types of texts	designating a situation and types of texts
ara-gama-g ara arama-ara ay p ara arama-	
Section 3. Preparation for writing and	Topic 3.1. Requirements for the structure,
defending the WRC in Russian.	content and language of the WRC. Stylistic
	and punctuation design of the WRC.
	Bibliography requirements. Requirements for
	the preparation and presentation of a scientific
	presentation.
	presentation.

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	"Applied problems of mathematical modeling"
Course Workload	2/72
Course	contents
Course Module Title	Brief Description of the Module Content
Section 1. Introduction to modern mathematical modeling in biology	Topic 1.1. Multidisciplinarity and multiphysics of modern scientific research
	Topic 1.2. The main types of the processes under study and the corresponding mathematical problems
Section 2. Visualization in Python	Topic 2.1. Construction of graphs of elementary functions. Setting the legend and axis labels Topic 2.2. Building a series of several curves. Construction of phase diagrams (parametric curves)
Section 3. Fundamentals of phenomenological chemical kinetics. Simple reactions of the 1st and 2nd order	Topic 3.1. Basic concepts of chemical kinetics. Reaction rate, simple reaction rate (law of mass action), reaction order. Dimensions of quantities (distance, time, concentration, speed). characteristic quantities. Kinetics of reactions of the 1st and 2nd order
Section 4. Numerical solution of kinetic equations	Topic 4.1. The concept of convergence in the integration step and convergence to the exact solution. Numerical solution of ODE (Cauchy problem) in Python. Comparison of exact and numerical solutions

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	"Functional differential equations and
	nonlocal boundary value problems"
Course Workload	6/216
	contents
Course Module Title	Brief Description of the Module Content
Section 1. Introduction	Topic 1.1. Variational and boundary value problems with deviating argument. Solvability and regularity of generalized solutions. Boundary value problems for differential-difference equations in the one-dimensional case.
Section 2. Strongly Elliptic Systems of Differential Equations	Topic 2.1. Investigation of Gording's inequality for equations and systems of partial differential equations. Topic 2.2. Localization method.
Section 3. Boundary value problems for elliptic differential-difference equations	Topic 3.1. Difference operators in bounded domains of the Euclidean space. Solution of the coercivity problem (investigation of Gording-type inequality) for differential-difference operators. Topic 3.2. Boundary value problems for elliptic functional-differential equations with expansions and contractions of arguments

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	"Additional chapters of mathematical
	modeling"
Course Workload	4/144
Course	contents
Course Module Title	Brief Description of the Module Content
Section 1. Methods for constructing mathematical models	Topic 1.1. Construction of mathematical models based on the fundamental laws of nature. Universality of mathematical models. Models of difficult-to-formalizable objects
Section 2. Examples of building mathematical models	Topic 2.1. Keynes' business cycle model and Weidlich-Haag sociodynamics. Topic 2.2. Models of interacting populations of Volterra-Lotka and Holling-Tanner. Infection patterns. Quasi-one-dimensional model of hemodynamics on graphs. Model of the legal system "power-society" Samarsky-Mikhailov. Lefebvre-Prigogine's "brusselator" model.
Section 3. Methods for constructing mathematical models	Topic 3.1. Geometric methods for ODE systems on the plane. Hopf's theorem on cycle birth bifurcation for a one-parameter system of ODEs. Cycle birth bifurcation for local semiflows. Topic 3.2. Methods of propagating waves and separation of variables in mixed problems for linear hyperbolic systems on graphs.

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	"Mathematical models in economics"
Course Workload	3/108
Course	contents
Course Module Title	Brief Description of the Module Content
Section 1. Introduction topic	Topic 1.1. Doing. Lyapunov stability and orbital stability. Lyapunov's methods for studying stability. structural stability. Examples
Section 2. Economic models and their dynamics	Topic 2.1. Economic models of Goodwin Topic 2.2. Rayleigh type equations. Limit cycles for equations of Rayleigh-type economic models. Hopf bifurcation of the Rayleigh equations

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	«Introduction to low-dimensional topology»
Course Workload	3/108
Course	contents
Course Module Title	Brief Description of the Module Content
Section 1. Fundamentals of classical differential geometry	Topic 1.1. Fundamentals of the theory of curves and regular surfaces.
Section 2. Fundamentals of the topology of smooth manifolds	Topic 2.1. Smooth manifold. Definition and examples. Embeddings and immersions of manifolds
Section 3. Fundamentals of the theory of knots and links	Topic 3.1. Concepts of knot and link. Knot and link diagrams. Polynomial invariants of knots and links Topic 3.2. Virtual knots and links. Knot and link invariants with values on graphs.

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	«Numerical analysis»
Course Workload	2/72
Course	contents
Course Module Title	Brief Description of the Module Content
Section 1. Introduction	Topic 1.1. Practical relevance of finding
	numerical solutions. Problems of
	computational mathematics, convergence,
	accuracy.
Section 2. Solution of nonlinear equations	Topic 2.1. Half division method. Simple
	iteration method. Newton's method. The
	secant method. Parabola method.
	Topic 2.2. Methods for finding the roots of
	systems of nonlinear equations. Seidel
	iteration method. Newton's method. Aitken
	convergence acceleration

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	«Elements of perturbation theory»
Course Workload	3/108
Course	contents
Course Module Title	Brief Description of the Module Content
Section 1. The problem of blowing up solutions. Basic concepts	Topic 1.1. The problem of the absence of solutions for some classes of nonlinear equations and partial differential inequalities. Research methods: comparison method, trial function method, energy estimation method
Section 2. Semilinear inequalities in space	Topic 2.1. Sufficient conditions for the absence of solutions for semilinear elliptic inequalities of both second and higher orders in the entire space. Topic 2.2. Critical exponent of Serrin's nonlinearity, its optimality
Section 3. Quasilinear inequalities in space	Topic 3.1. Quasi-linear elliptic inequalities in the whole space. Coercive and anti-coercive cases

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	«Mathematical models in biology and
	medicine»
Course Workload	4/144
Course	contents
Course Module Title	Brief Description of the Module Content
Section 1. Introduction to modern	Topic 1.1. Multidisciplinarity and
mathematical modeling in biology	multiphysics of modern scientific research.
	The main types of the processes under study
	and the corresponding mathematical problems
Section 2. Solving the equations of chemical	Topic 2.1. The need to create software
kinetics in the COPASI package	packages for the study of complex kinetic
	models of biology and biochemistry.
	Topic 2.2. Creation and analysis of simple
	kinetic models in the COPASI package (simple
	reactions of the 1st and 2nd order, reversible,
	sequential processes). Solution analysis
Section 3. Analysis of complex reactions.	Topic 3.1. Reduction of complex models.
Model reduction. The bottleneck principle and	Principles of bottleneck and quasi-stationarity.
the principle of quasi-stationarity	Illustration using a 2-step irreversible reaction
	as an example; areas of applicability of these
	principles. Numerical solution and its analysis

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	«Non-Euclidean geometries and their
	applications»
Course Workload	2/72
Course	contents
Course Module Title	Brief Description of the Module Content
Section 1. Non-Euclidean geometry of Lobachevsky	Topic 1.1. Discovery of the non-Euclidean geometry of Lobachevsky. Lobachevsky space models. Basic of Lobachevsky planimetry. Volumes of figure in Lobachevsky space
Section 2. Spherical geometry	Topic 2.1. Basic concepts of spherical geometry. Basic formulas of spherical trigonometry Topic 2.2. Volumes of figure in spherical spaces
Section 3. Non-Euclidean geometry of Galileo	Topic 3.1. Basic definitions and concepts of Galilean geometry. The simplest examples of theorems for the Galilean plane

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	«Nonlinear evolution equations»
Course Workload	3/108
Course	contents
Course Module Title	Brief Description of the Module Content
Section 1. Bochner measurability, Bochner integral	Topic 1.1. Definition of measurability and Bochner integrability of a function with values in a Banach space, comprehensive properties. Criteria for measurability and integrability in the sense of Bochner. Limit of a sequence of functions measurable in the sense of Bochner. Action of a linear operator on the Bochner integral.
Section 2. Spaces of integrable functions	integral Topic 2.1. Definition of spaces of integrable functions with values in a Banach space. Completeness and separability of such spaces, dual spaces, Hölder's inequality Topic 2.2. Lebesgue points of integrable functions. Relationship between measurability and integrability according to Bochner and Lebesgue
Section 3. Strong and weak differentiability	Topic 3.1. Definition and properties of differentiable and weakly differentiable functions with values in a Banach space. Complete systems of functions in spaces of differentiable functions. Density of spaces of differentiable functions in spaces of integrable functions

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	«Introduction to Neural Networks, Big Data
	Analysis and Machine Learning»
Course Workload	3/108
Course	contents
Course Module Title	Brief Description of the Module Content
Section 1. Basics of artificial neural networks	Topic 1.1. Biological prototypes, artificial neurons, single-layer and multi-layer artificial
	neural networks.
	Topic 1.2. Training artificial neural networks.
	Learning algorithms
Section 2. Perceptrons	Topic 2.1. Perceptron architecture. The range of tasks for which the perceptron is used. Education. Back propagation procedure.
Section 3. Stochastic methods for training neural networks	Topic 3.1. Overview of the main stochastic methods used for training neural networks
Section 4. Algorithms for training neural networks	Topic 4.1. Study of various methods for training neural networks. Systematization of what has been learned.

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	«Computational methods of continuum
	mechanics»
Course Workload	3/108
Course contents	
Course Module Title	Brief Description of the Module Content
Section 1. Nonlinear models of natural	Topic 1.1. Mathematical modeling of one-
science	dimensional unsteady gas movement with
	finite disturbances: a model approach to
	studying the processes of gas, water, oil
	extraction from natural formations
	Topic 1.2. Mathematical model of propagation
	of unloading waves in a plastic medium
Section 2. About solutions (research) of	Topic 2.1. Numerical methods:
nonlinear models	a) modified method of characteristics
	b) cellular-layer method.
	Computational algorithms and programs that
	implement them on computers.

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	«Computer technologies in science and
	education»
Course Workload	10/360
Course	contents
Course Module Title	Brief Description of the Module Content
Section 1. MS Excel	Topic 1.1. Scientific calculations in MS Excel
	Topic 1.2. Data analysis in MS Excel Topic 1.3. Programming in MS Excel
Section 2. Registration of educational and scientific works in the LaTeX system	Topic 2.1. Typing in LaTeX. A set of mathematical formulas in LaTeX. Matrix set. Tags and links
Section 3. VBA programming in MS Access	Topic 3.1. Development environment. Program structure. subroutines. Built-in functions. Working with MS Access objects

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	«History and methodology of	
	mathematics»	
Course Workload	3/108	
Course contents		
Course Module Title	Brief Description of the Module Content	
Section 1. Main stages and milestones in the development of mathematics	Topic 1.1. General overview of the historical development of mathematics	
	Topic 1.2. The history of the discovery of non-Euclidean geometry	
	Topic 1.3. History of solving an algebraic equation of the 5th degree	
	Topic 1.4. History of the foundations of mathematics	

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	«Interdisciplinary coursework»
Course Workload	2/72
Course contents	
Course Module Title	Brief Description of the Module Content
Section 1. The Cauchy problem and initial-boundary value problems for the equation of string vibrations	Topic 1.1. Construction of solutions to the Cauchy problem and initial-boundary value problems for the equation of string vibrations by the method of propagating waves
Section 2. The Cauchy problem for the heat equation	Topic 2.1. Construction of solutions to the Cauchy problem for the heat equation using the Poisson formula
Section 3. Variable separation method	Topic 3.1. Construction of solutions to boundary value problems for various classes of partial differential equations by separation of variables
Section 4. Quasi-linear equations of the 1st order	Topic 4.1. Construction of classical solutions of the Cauchy problem by the method of characteristics. Construction of solutions to the Riemann problem on discontinuity decay

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	"Mathematical models and databases"	
Course Workload	3/108	
Course contents		
Course Module Title	Brief Description of the Module Content	
Section 1. Work of subqueries, nested queries	Topic 1.1. Statements that allow you to work with subqueries, nested SELECT statements	
Section 2. Correlated subqueries	Topic 2.1. Subqueries that allow you to work with candidate shirts for checking the predicate	
Section 3. Conditions of the first order in the classical problem of the calculus of variations	Topic 3.1. Action of EXISTS operators with correlated subqueries	
Section 4. Special operator ANY (or SOME)	Topic 4.1. Alternative operators to the EXIST operator, more convenient for subqueries	
Section 5 Special operator ALL	Topic 5.1. An alternative operator that checks information in all rows	
Section 6. Combining multiple queries into one	Topic 6.1. Queries with the same structure in the SELECT clause can be combined into one and executed as a single entity	
Section 7. EXEPT and INTERSECT statements	Topic 7.1. Operators that use the minus and intersection operation, according to the operations of set theory	
Section 8. Introduction to representation	Topic 8.1. Creation of virtual tables that are used to work with data in order to hide it from the user	

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	"Nonlinear analysis and optimization"	
Course Workload	3/108	
Course contents		
Course Module Title	Brief Description of the Module Content	
Section 1. General concepts	Topic 1.1. Classification of extremal problems. Statement of classical problems of calculus of variations and optimal control. Elements of functional analysis	
Section 2. Differentiable functionals	Topic 2.1. Differentiable Functionals. Derivative in direction, Lagrange, Gateau and Fréchet. Extremum of differentiable functionals Topic 2.2. Uniqueness of the Fréchet derivative. Fermat's principle and related statements	
Section 3. First order conditions in the classical problem of the calculus of variations	Topic 3.1. Statement of the simplest problem of the calculus of variations. Basic Lemmas of the Calculus of Variations Topic 3.2. Extremal smoothness. Derivation of the Euler equation for the classical problem of the calculus of variations. Special cases of the Euler equation	
Section 4. The Euler equation in the multidimensional case	Topic 4.1. Formulation of the problem. Derivation of the Euler equation using the main lemmas of the calculus of variations	

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	"Functional spaces"	
Course Workload	3/108	
Course contents		
Course Module Title	Brief Description of the Module Content	
Section 1. Morrey spaces	Topic 1.1. Definition and basic properties of Morrey spaces. Examples of functions from Morrey spaces. Completeness. Comparison with Nikolsky spaces	
	Topic 1.2. Definition and basic properties of local Morrey spaces. Examples of functions from Morrey spaces	
	Topic 1.3. Definition and basic properties of general local and global spaces of Morrey type. Conditions for non-triviality	
Section 2. Maximum operator	Topic 2.1. Definition and basic properties of the maximum Hardy-Littlewood operator	
	Topic 2.2. Necessary and sufficient conditions for a maximal operator to be bounded in general local spaces of Morrey type	
Section 3. Fractional maximum operator	Topic 3.1. Definition and basic properties of the fractional maximal operator. Necessary and sufficient conditions for boundedness of a fractional maximal operator in general local spaces of Morrey type	

Faculty of Physics, Mathematics and Natural Sciences

educational division - faculty/institute/academy

COURSE DESCRIPTION

 $01.04.01\ Mathematics\ /\ Functional\ methods\ in\ differential\ equations\ and\ interdisciplinary\ research$

Course Title	"Modern problems of mathematics"	
Course Workload	6/216	
Course contents		
Course Module Title	Brief Description of the Module Content	
Section 1. Fourier transforms	Topic 1.1. Fourier transforms of basic and generalized functions	
	Topic 1.2. Fourier transform of functions from L_2	
	Topic 1.3. Fourier transform of functions from L_2. Plancherel's theory.	
	Topic 1.4. Fourier transform of functions from L_2	
Section 2. Definition and basic properties of Fourier multipliers	Topic 2.1. The Fourier space of multipliers in L_2. Sufficient conditions for Fourier multipliers in L_2. Statement and proof of the main theorem on the multipliers of the Fourier integral	
Section 3. Subspace of functions with bounded spectrum	Topic 3.1. Integral representation of a function with limited spectrum. Bernstein's inequality for a function with bounded spectrum. Inequality of different Nikolsky metrics for a function with bounded spectrum.	
Section 4. Sobolev spaces	Topic 4.1. Averaging of functions according to Sobolev, its connection with generalized differentiation Topic 4.2. Embedding theorems for Sobolev	
	spaces	

V.I. Burenkov		
signature	name and surname	
HEAD		
OF EDUCATIONA	L DEPARTMENT	
	A.B. Muravnik	
signature	name and surname	

Program manager: