ca953a0120d891083f939673078ef1a989dae18a

Academy of Engineering

LUMUMBA

RUDN University

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Optimization Methods in Civil Engineering

course title

Recommended by the Didactic Council for the Education Field of: 08.04.01 Civil Engineering

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Civil Engineering and Built Environment

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course <u>Optimization Methods in Civil Engineering</u> is to gain knowledge and skills in research concerning the tasks related to optimization problems, which characterizes the stages of competence formation and ensures the achievement of the planned results of the development of the educational program.

The main objective of the course Optimization Methods in Civil Engineering is to get acquainted with the methods and tools of optimal programming problems and learn how to apply them in production and in scientific research.

2. REQUIREMENTS FOR LEARNING OUTCOMES

The course <u>Optimization Methods in Civil Engineering</u> implementation is aimed at the development of the following competences (competences in part):

Compet ence code	Competence descriptor	Competence formation indicators (within this course)
	based on the results of engineering and technical design	PC-2.1 Capable of performing engineering and technical design and developing design products for building structures, grounds and foundations; PC-2.2 Able to perform engineering and technical design and develop design products for engineering systems and engineering structures

 Table 2.1. List of competences that students acquire during the course <u>«Optimization</u>

 Methods in Civil Engineering»

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course <u>Optimization Methods in Civil Engineering</u> refers to the *elective component* of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other disciplines (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course <u>Optimization Methods in Civil Engineering</u>.

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the internship results.

Comp etence code	Competence descriptor	Previous courses / modules, internships	Subsequent courses / modules, internships
PC-2	Development of project products based on the results of engineering and technical design for urban development activities	Digital technologies in construction; Structural Design in Steel; Nanotechnology in Civil Engineering; Structural Design in Reinforced Concrete: Special Topics; Structural Dynamics; Structural Design in Reinforced Concrete; Building materials: Special Topics; Structural Design in Steel: Special Topics; Modelling of Construction Processes	Desin Practice; Technological Practice; Pre-Graduation Practice

4. COURSE WORKLOAD

The total workload of the course <u>Optimization Methods in Civil Engineering</u> is <u>2</u> credits. *Table 4.1. Academic activities types by periods of the higher education programme*

Type of academic		Total	Semester(s)			
activiti	es	academic hours	3			
Contact academic hours		36	36			
including:						
Lectures (LC)		18	18			
Lab works (LW)		0	0			
Seminars (workshops / tutorials) (S)		18	18			
Self-studies academic hours		18	18			
Evaluation and assessment academic hours		18	18			
Course work / project, credits						
Course workload	academi c hours	72	72			
	credits	2	2			

5. COURSE CONTENTS

Modules	Contents (topics)	Academic activities types *
Section 1. Introduction to optimization	Topic 1.1 Methods of Operations Research. Historical development	LC, S
Section 2. Statement of optimization problem	Topic 2.1 Constrained and unconstrained optimization problems. Design Vector. Design Constraints constraint surface. Objective Function. Objective Function Surfaces	LC, S
Section 3. Classification of optimization problems	Topic 3.1 Classification Based on the Existence of Constraints. Classification Based on the Nature of the Design Variables. Classification Based on the Physical Structure of the Problem. Classification Based on the Nature of the Equations Involved	LC, S
Section 4. Classical optimization techniques	Topic 4.1 Single-variable optimization. Theorem of necessary and sufficient condition	LC, S
Section 5. Multivariable optimization with no constraints	Topic 5.1 The necessary and sufficient conditions for the minimum or maximum of an unconstrained function of several variables	LC, S

* - to be filled in only for full -time training: LC - lectures; LW - lab work; S - seminars.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

	lassroom equipment and technology support red	1
Type of academic	Classroom equipment	Specialized educational / laboratory equipment,
activities		software and materials for
		course study (if necessary)
Lectures	An auditorium for conducting lectures,	
	equipped with a set of specialized furniture;	
	a blackboard (screen) and technical means	
	for multi-media presentations.	
Seminars	A classroom for conducting seminars, group	
	and individual consultations, current and	
	midterm assessment; equipped with a set of	
	specialised furniture and technical means for	
	multimedia presentations.	
Computer Labs	A classroom for conducting classes, group	Software:
	and individual consultations, current and	MathCAD
	mid-term assessment, equipped with	
	personal computers (in the amount of 14	
	pcs), a board (screen) and technical means of	
	multimedia presentations.	
Self-studies	A classroom for independent work of	
	students (can be used for seminars and	
	consultations), equipped with a set of	
	specialised furniture and computers with	
	access to the electronic information and	
	educational environment	

Table 6.1. Classroom equipment and technology support requirements

7. RESOURCES RECOMMENDED FOR INTERNSHIP

Main readings:

1. Singiresu S. Rao, Engineering Optimization: Theory and Practice, Fourth Edition,

2022 by John Wiley & Sons, Inc.

Additional readings:

1. R.L. Fox, Optimization methods for Engineering Design, Addison-Wesley, Reading, MA, 2023

2. D.J. Wilde, Optimum seeking methods, Prentice Hall, Englewood Cliffs, NJ, 1964 *Internet sources:*

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) <u>http://lib.rudn.ru/MegaPro/Web</u>
- EL "University Library Online" http://www.biblioclub.ru
- EL "Yurayt" http://www.biblio-online.ru
- EL "Student Consultant" www.studentlibrary.ru
- EL "Lan" <u>http://e.lanbook.com/</u>
- EL "Trinity Bridge"
- 2. Databases and search engines:
 - electronic foundation of legal and normative-technical documentation http://docs.cntd.ru/
 - Yandex search engine https://www.yandex.ru/
 - Google search engine https://www.google.ru/
 - Scopus abstract database http://www.elsevierscience.ru/products/scopus/

The training toolkit and guidelines for a student:

1. Collection of lectures on the course Optimization Methods in Civil Engineering.

* The training toolkit and guidelines for the course are placed on the internship page in the university telecommunication training and information system under the set procedure..

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS INTERNSHIP RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course <u>Optimization Methods in Civil Engineering</u> results are specified in the Appendix to the internship syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor in the Department of Construction Technology and	t			
Structural Materials		M.I. Rynkovskaya		
position, educational department	signature	name and surname		
position, educational department	signature	name and surname		
HEAD OF EDUCATIONAL DEPAR Head of the Department of	RTMENT:			
Construction Technology and Structural Materials		A.V. Solovyeva		
position, educational department	signature	name and surname		
HEAD OF				
HIGHER EDUCATION PROGRAM	IME:			
Associate Professor of the				
Department of Construction				
Technology and Structural Materials		M.I. Rynkovskaya		
position, educational department	signature	name and surname		