Математики РУДН и Свободного университета Берлина предложили новый способ использования нейронных сетей для работы с зашумленными данными больших размерностей

Математики РУДН и Свободного университета Берлина предложили новый способ использования нейронных сетей для работы с зашумленными данными больших размерностей

Математики РУДН и Свободного университета г. Берлина предложили новый подход к изучению распределений вероятностей наблюдаемых данных с помощью искусственных нейронных сетей. Новый подход лучше взаимодействует с так называемыми выбросами — с теми объектами входных данных, которые значительно выделяются из общей выборки.

Восстановление распределения вероятностей наблюдаемых данных искусственными нейронными сетями — это наиболее важная часть машинного обучения. Распределение вероятностей не только позволяет прогнозировать поведение исследуемой системы, но и количественно оценить неопределенность, с которой делаются прогнозы. Главная трудность заключается в том, что, как правило, наблюдаются лишь сами данные, но их вероятностные распределения в точном виде не доступны. Для решения этой проблемы используют байесовские и близкие к ним приближенные методы. Но их использование увеличивает сложность нейронной сети и соответственно ее обучения.

Математики РУДН и Свободного университета г. Берлина использовали детерминированные веса для нейронных сетей, а выходами сетей закодировали распределения латентных переменных для искомого маргинального (частного) распределения. Анализ динамики обучения таких сетей позволил им получить формулу, которая корректно оценивает дисперсию распределения наблюдаемых данных, несмотря на наличие в данных выбросов. Предложенную модель проверили на разных данных: синтетических и реальных. Новый метод позволяет восстанавливать распределения вероятностей с более высокой точностью по сравнению с другими современными методами. Точность оценивалась по методу AUC (area under the curve — это площадь под графиком, который позволяет оценить среднеквадратичную ошибку предсказаний в зависимости от размера выборки, оцененной сетью как «надежная»; чем выше оценка AUC, тем качественнее предсказания).

Статья опубликована в журнале Artificial Intelligence.

Новости
Все новости
Наука
5 марта
Научная повестка РУДН до 2030 года: новая программа развития НИОКР и инновационной деятельности

РУДН постоянно адаптируется к изменениям современного мира и гибкостью отвечает на вызовы. Это позволяет держать планку научно-исследовательского университета мирового уровня. Сфера науки — не исключение. Начальник научного управления Пётр Докукин представил обновленную программу развития НИОКР (научно-исследовательские и опытно-конструкторские работы) на заседании Ученого совета РУДН.

Наука
3 марта
Лидеры студенческой науки РУДН 2024: поздравляем победителей

Лидеров студенческой науки РУДН традиционно наградили на заседании ученого совета. Награды вручили за личные и коллективные победы в международных олимпиадах, статусных конкурсах научно-исследовательских работ и масштабных проектах. Отдельную благодарность ректора получили и научные руководители ребят.

Наука
25 февраля
Молодые ученые РУДН победили на всероссийской конференции «Физика водных растворов»

На 7-й Всероссийской конференции «Физика водных растворов» в Российской академии наук встретились около 150 ведущих российских и иностранных учёных.