Научный студенческий семинар «Дифференциальные уравнения в рамках работы ПСО «Математика, информатика и их приложения»
Задачи построения оптимальных фильтров Калмана-Бюси, теории оптимального управления, теории эволюционных процессов приводят к нелинейным дифференциальным уравнениям с подвижными особыми точками, которые относятся к классу уравнений в общем случае не разрешимых в квадратурах. Последнее актуализирует развитие аналитических приближенных методов решения данной категории уравнений. Решению данной проблемы посвящены статьи как зарубежных авторов, так и отечественных. Если в работах белорусских авторов обосновано решение задачи в квадратурах лишь для частных случаев, то в работах других авторов отсутствует строгое обоснование применяемых действий и предлагаемые методы не носят общего характера. Один из вариантов строгого обоснования и имеющий общий характер предложен в работах Орлова В.Н. для ряда классов нелинейных уравнений: Риккати, Пенлеве, Абеля. В данной работе дано развитие указанного метода решения для нового класса нелинейных дифференциальных уравнений второго порядка с подвижными особыми точками. Рассматриваемый класс уравнений, в частности его нормальная форма, представляет основу для исследования эволюции характера подвижных особых точек более сложных нелинейных дифференциальных уравнений.
Целью исследования является разработка аналитического приближенного метода решения, представленного в работах Орлова В.Н., для нового класса нелинейных дифференциальных уравнений второго порядка с полиномиальной правой частью пятой степени.