Химик РУДН создал углеродный «цветок» из муки для цинк-ионных суперконденсаторов
Суперконденсаторы могут хранить в 100 раз больше энергии, чем обычные батареи. Они быстрее заряжаются и выдерживают больше циклов перезарядки. Один из самых перспективных суперконденсаторов — цинк-ионный. Однако его реальные емкости, которые удается достигнуть экспериментально, значительно меньше рассчитанных теоретически. Это связано с ограничениями характеристик углеродных соединений, которые используются в качестве катодов. В попытках подобрать лучшую углеродную структуру ученые исследуют углеродные нанотрубки, химически активированный графен, слоистый пористый углерод и полые углеродные сферы. Химик РУДН предложил новую 3D-структуру, которая улучшаетт свойства цинк-ионных суперконденсаторов.
«Гибридные суперконденсаторы на основе ионов — перспективная платформа для оптимизации устройств хранения энергии. Однако ограниченные недостаточными качествами углеродных катодов, энергетические возможности цинк-ионных суперконденсаторов уступают ожидаемым, особенно при высокой выходной мощности», — Рафаэль Луке, PhD, профессор Центра молекулярного дизайна и синтеза инновационных соединений для медицины РУДН.
Чтобы получить новую 3D-структуру, химики смешали в воде меламин, борную кислоту и муку. Смесь на 15 часов поместили в автоклав при температуре 180℃. В результате получились структуры, похожие по строению на гвоздику или гортензию — неровные шары с большим количеством пор. Этот «букет» химики РУДН подвергли пиролизу — в течение 2 часов нагревали, постепенно повышая температуру до 900℃. В ходе пиролиза вспомогательные соединения в «цветах» распались, и остался только углеродный каркас. Аналогичные процедуры химики провели, используя в качестве исходных соединений муку и меламин, а также только муку. Все полученные структуры изучили с помощью сканирующего электронного микроскопа. Затем из полученного «цветочного» углерода (BCF) химики сделали цинк-ионные суперконденсаторы и измерили его характеристики.
Химики РУДН сравнили строение полученных соединений и пришли к выводу, что борная кислота не повлияла на формирование «цветочной» структуры — на самом деле основой для нее стали кристаллы меламина и мука. Выяснилось также, что BCF состоит из множества «нанолепестков» — тонких листов, соединенных друг с другом в единую шаровую конструкцию. Эти связанные нанолепестки обеспечили быструю передачу заряда внутри цветка и низкое сопротивление. Емкость аккумулятора на основе BCF оказалась больше, чем у других аналогичных устройств — 133,5 мАч/грамм. Плотность энергии (то есть количество энергии, которое может хранить 1 кг аккумулятора) также превысила существующие цинк-ионные аналоги
«Подходящие поры полученного углерода и структура его нанолепестков обеспечивают проникновение ионов электролита и обмен ими. Наше исследование прокладывает путь к созданию углеродных структур из отдельных углеродных сегментов для устройств хранения энергии», — Рафаэль Луке, профессор Центра молекулярного дизайна и синтеза инновационных соединений для медицины РУДН.
Результаты опубликованы в журнале Carbon.
В РУДН подвели итоги конкурса «По страницам курсовой» 2024. Победителями стали 14 студентов, еще 48 — призерами. Что исследовали авторы лучших научных работ? Ответом делимся ниже.
Авторский коллектив под руководством заведующего кафедрой общей и клинической фармакологии РУДН Сергея Зырянова стал победителем всероссийского конкурса научных проектов «Технологии для здоровья человека».
РУДН постоянно адаптируется к изменениям современного мира и гибкостью отвечает на вызовы. Это позволяет держать планку научно-исследовательского университета мирового уровня. Сфера науки — не исключение. Начальник научного управления Пётр Докукин представил обновленную программу развития НИОКР (научно-исследовательские и опытно-конструкторские работы) на заседании Ученого совета РУДН.