Инженеры РУДН рассчитали параметры радиатора для лунной электростанции
Инженеры РУДН рассчитали параметры системы, которая сможет спасать лунные электростанции от перегрева. Эти разработки понадобятся при планировании длительных лунных миссий и колонизации спутника.
Колонизация Луны — это не только тема для научно-фантастических произведений. Это вероятный «опорный пункт» для дальнейшего изучения и освоения Космоса. Одна из основных задач, с которой столкнутся будущие космические миссии, — обеспечение энергии. Для Луны электростанции нужны мощные, из-за чего есть риск перегрева. Для этого нужны радиаторы, которые могут эффективно работать даже в экстремальных условиях. Инженеры РУДН представили модель расчета такого радиатора — по заданным условиям можно точно вычислить все необходимые параметры.
«Колонизация Луны должна стать важным шагом при подготовке к исследованию Марса. Лунные базы будут иметь высокие требования к мощности. Они должны обеспечить энергоемкие научные эксперименты, добычу и переработку полезных ископаемых, исследования поверхности. Поэтому очень важно обеспечить надежный и мощный источник энергии. Из-за экстремально низких температур и суровых условий среды в космосе отводить лишнее тепло от электростанций довольно сложно. Поэтому для эффективности электростанций нужны высокоэффективные системы отвода тепла», — Сергей Смирнов, кандидат технических наук, доцент кафедры энергетического машиностроения РУДН.
Для расчета радиатора по предлагаемой модели нужны четыре главных параметра: количество тепла, которое нужно отвести, минимальная температура рабочей жидкости (хладагента), термодинамические свойства жидкости и температура окружающей среды. Последний параметр особенно важен в случае Луны, так как условия на спутнике экстремальные. Предполагается, что устройство расположено на полюсе Луны, а рабочие жидкости радиатора — гелий и аммиак.
С помощью новой модели можно детально рассчитать все параметры радиатора, вплоть до количества труб и их длины. Также инженеры РУДН смогли рассчитать возможности различных хладагентов и режимов их потоков. Например, жидкий аммиак дает больше «свободы» в изменении геометрических параметров радиатора, не снижая при этом мощности. Результаты проведенного исследования планируется использовать в перспективных программах космических энергоблоков ООО «Наука-Энерготех».
«Мы усовершенствовали расчеты для отвода тепла. С новым подходом определить основные конструктивные параметры радиатора проще. С его помощью можно оценить возможности хладагентов и режим подачи. Важно отметить, что метод расчета не ограничивается конкретным хладагентом — можно рассматривать любой хладагент», — Хассан Халифе, ассистент кафедры энергетического машиностроения РУДН.
Результаты опубликованы в журнале Symmetry.
Представьте себе мир, где у каждого есть достаточно еды, чистая вода, доступ к образованию и достойная работа. Мир, где берегут природу и заботятся о будущем нашей планеты. Это и есть цели устойчивого развития — построить устойчивое будущее для всех! Для этого Организация Объединенных Наций (ООН) в 2015 году определила 17 Целей устойчивого развития (ЦУР). ЦУР — это глобальный план, который помогает странам и людям вместе двигаться к лучшему будущему. К нему присоединились 193 государства-члена ООН.
Исследователи факультета искусственного интеллекта РУДН провели масштабное исследование, которое раскрыло системные ошибки больших языковых моделей (LLM) при диагностике депрессии по тексту. Эта работа, выполненная совместно с коллегами из AIRI, ФИЦ ИУ РАН, ИСП РАН, МФТИ и MBZUAI, не только выявляет проблему, но и закладывает основу для создания более надёжных и безопасных инструментов для детектирования депрессии и тревожности.
В РУДН состоялась первая научно-практическая конференция «Функциональная морфология тканевого микроокружения: от теории к практике», посвящённая памяти академика РАН Михаила Пальцева. Она объединила ведущих исследователей из России, Китая и других стран, став важной площадкой для обсуждения трансляции фундаментальных открытий в персонализированную медицину.