Математики РУДН и Свободного университета Берлина предложили новый способ использования нейронных сетей для работы с зашумленными данными больших размерностей
Восстановление распределения вероятностей наблюдаемых данных искусственными нейронными сетями — это наиболее важная часть машинного обучения. Распределение вероятностей не только позволяет прогнозировать поведение исследуемой системы, но и количественно оценить неопределенность, с которой делаются прогнозы. Главная трудность заключается в том, что, как правило, наблюдаются лишь сами данные, но их вероятностные распределения в точном виде не доступны. Для решения этой проблемы используют байесовские и близкие к ним приближенные методы. Но их использование увеличивает сложность нейронной сети и соответственно ее обучения.
Математики РУДН и Свободного университета г. Берлина использовали детерминированные веса для нейронных сетей, а выходами сетей закодировали распределения латентных переменных для искомого маргинального (частного) распределения. Анализ динамики обучения таких сетей позволил им получить формулу, которая корректно оценивает дисперсию распределения наблюдаемых данных, несмотря на наличие в данных выбросов. Предложенную модель проверили на разных данных: синтетических и реальных. Новый метод позволяет восстанавливать распределения вероятностей с более высокой точностью по сравнению с другими современными методами. Точность оценивалась по методу AUC (area under the curve — это площадь под графиком, который позволяет оценить среднеквадратичную ошибку предсказаний в зависимости от размера выборки, оцененной сетью как «надежная»; чем выше оценка AUC, тем качественнее предсказания).
Статья опубликована в журнале Artificial Intelligence.
Сегодня диагностика и планирование лечения у ортодонтов занимает несколько дней. Также во время лечения могут возникнуть осложнения, которые замедляют процесс выздоровления пациента. Например, неправильное планирование ортодонтического лечения может привести к заболеваниям височно-нижнечелюстного сустава.
В РУДН прошла Всероссийская научно-практическая конференция с международным участием «Политические науки и наследие Великой Победы: уроки истории и современные вызовы», посвященная 80-летию победы в Великой Отечественной войне.
Монография «Судебная экспертиза: типичные ошибки», подготовленная при участии Дмитрия Сундукова, профессора, заведующего кафедрой судебной медицины медицинского института РУДН, отмечена на V конкурсе на лучшее издание, посвященное деятельности следственных органов России. Исследование получило I место в категории «Лучшее исследование криминалистического обеспечения деятельности следственных органов».