Ученый РУДН назвал лучшую нейросеть для диагностики патологий мозга

Ученый РУДН назвал лучшую нейросеть для диагностики патологий мозга

Ученый РУДН назвал нейросети, которые помогут медикам интерпретировать результаты электроэнцефалограммы (ЭЭГ) и других анализов мозговой активности. Лучшая из них работает с почти 100% точностью, при этом не просто выдает результат, а объясняет, почему он получился именно таким.

Один из ключевых этапов в диагностике патологий мозга — нейроимиджинг. Это визуализация мозговой активности и тканей мозга с помощью КТ, рентгена, электроэнцефалограммы (ЭЭГ) и других методов. Интерпретацией результатов таких анализов занимаются специально обученные профессионалы. Но даже опытный глаз не всегда может сделать правильное заключение. Помочь в интерпретации может искусственный интеллект. Так как речь идет о тандеме врач-компьютер, а не о замене человека искусственным интеллектом, необходимы такие модели, которые не просто выдают результат, а могут «объяснить», почему он получился именно таким. Это свойство называют интерпретируемостью. Научный сотрудник РУДН с коллегами из Балтийского федерального университета подобрали лучшие модели, которые подойдут для этой цели.

«Искусственный интеллект в анализе биологических и медицинских данных — важное и активно исследуемое направление. Это касается и анализа медицинских изображений. Одним из центральных моментов тут остается интерпретируемость. Это важно для систем принятия решений, когда медицинский работник должен понимать и интерпретировать результат работы искусственного интеллекта. Поэтому важно разрабатывать различные подходы к нейровизуализации, которые поддаются интерпретации. Нашей целью было найти хорошую математическую модель для классификации состояний мозга с акцентом на интерпретируемость результатов», — Александр Храмов, доктор физико-математических наук, ведущий научный сотрудник Департамента транспорта РУДН, главный научный сотрудник Балтийского центра нейротехнологий и искусственного интеллекта БФУ имени И. Канта.

Для поиска лучших моделей исследователи использовали данные ЭЭГ, которые сняли у пациентов, когда они смотрели на разные изображения. Первое — известная картина «Мона Лиза», второе — оптическая иллюзия «Куб Неккера», на которой изображен простой каркас куба. Дело в том, что на рисунке не обозначено, какие грани находятся спереди, а какие — сзади. Человек обычно не замечает противоречия и интерпретирует картинку однозначно, а для компьютера эта задача не так проста. Поэтому куб Неккера используют для проверки компьютерных моделей человеческой системы восприятия. В эксперименте приняло участие пять человек. По полученным результатам ЭЭГ нейросеть должна была определить яркость изображения, которое видит человек. Кроме этого, с помощью специального алгоритма нейросеть выделяет конкретные параметры, которые повлияли на конечное решение модели.

Инженеры сравнили несколько моделей искусственных нейронных сетей. Лучшей оказалась модель с так называемым адаптивным градиентом Adagrad. Это способ оптимизации, который «настраивает» нейросеть с учетом частоты, с которой встречается тот или иной признак. Нейросеть с адаптивным градиентом позволила достичь точности модели в 92,9%.

«Лучшим методом оптимизации оказался Adagrad. Наши результаты помогут подобрать подходящие интерпретируемые методы машинного обучения для правильного обучения интерфейсов мозг-компьютер», — Александр Храмов.

Результаты опубликованы в журнале Mathematics.

Новости
Все новости
Наука
14 октября
Стартовал приём заявок на шестую акселерационную программу «GreenTech Устойчивое развитие»

Фонд «Сколково» (Группа ВЭБ.РФ) совместно с Министерством природных ресурсов и экологии РФ и ведущими промышленными компаниями страны объявил о старте шестого цикла крупнейшей в России программы развития экосистемы поставщиков для промышленности «GreenTech Устойчивое развитие». Приём заявок от разработчиков технологических решений продлится до 20 октября 2025 года.

Наука
10 октября
«Семья, исследования, будущее»: студент РУДН — о работе научного общества факультета социальных и гуманитарных наук

Исторические конференции, встречи с политологами и археологами и интересные проекты. Это жизнь активистов, которые состоят в научном студенческом обществе факультета социальных и гуманитарных наук РУДН. В конкурсе среди вузовских НСО оно заняло третье место.

Наука
24 сентября
«Мы стремимся сделать науку доступной каждому», - председатель НСО института экологии РУДН рассказала о проектах и достижениях GreenLab

В РУДН подвели итоги конкурса среди научных студенческих обществ и научных кружков. Лучшим НСО стало GreenLab института экологии, второе место заняло сообщество института иностранных языков, а третье — факультета гуманитарных и социальных наук.