Инженеры РУДН назвали лучшие методы машинного обучения для обработки данных радаров

Инженеры РУДН назвали лучшие методы машинного обучения для обработки данных радаров

Инженеры РУДН сравнили четыре метода машинного обучения, которые применяют для обработки данных радиолокационных радаров. Исследователи назвали самый эффективный и самый быстрый методы.

Изображения поверхности Земли и других планет получают с помощью радиолокатора (радара) с синтезированной апертурой (SAR). Радар располагают на космическом аппарате или самолете-носителе. Он сканирует поверхность и одновременно отслеживает свое положение. В результате получаются детальные карты поверхности, причем их качество не зависит ни от погоды, ни от времени суток. Самая распространенная разновидность таких радаров — PolSAR. Для обработки данных радара применяют методы машинного обучения. Из-за различий в работе алгоритмов они работают с разной точностью и скоростью. Поэтому при неправильно подобранном алгоритме вычисления оказываются менее точными или требуют большего времени на расчеты. Инженеры РУДН сравнили четыре наиболее популярных метода и выяснили, какой из них самый эффективный.

«Классификация данных PolSAR — одна из любимых тем в области дистанционного зондирования. Для этого используется большой спектр алгоритмов. Наиболее известный из них — метод опорных векторов SVM — широко применяется для классификации данных PolSAR. Однако до сих пор не проводилось исследований по использованию некоторых расширенных версий SVM. Мы сравнили эти методы для классификации данных PolSAR», — доктор технических наук Юрий Разумный, директор департамента механики и процессов управления Инженерной академии РУДН.

Инженеры РУДН совместно со своими зарубежными партнерами сравнили четыре метода: метод опорных векторов (SVM) и три его модификации — метод наименьших квадратов опорных векторов (LSSVM), метод релевантных векторов (RVM) и метод импорта векторов (IVM). Их работу проверили на трех наборах данных, полученных с PolSAR: снимках провинции Флеволанд (Нидерланды), окрестностей деревни Фоулум (Дания) и города Виннипег (Канада). Первый и третий набор данных включал в себя обширные сельскохозяйственные территории. На снимки Фолума попали в основном лес, сельскохозяйственные поля и заселенные площади. Задача алгоритмов машинного обучения — определить, как используется каждый участок земли (где выращивают пшеницу, где растет лес, где течет река и так далее). Обучение алгоритмов проводили на 5%, 10%, 50% и 90% данных, а оставшиеся использовали для проверки их работы. Эффективность алгоритмов оценивали показателем, изменяющимся от 0 до 1, причем единице соответствует идеальная классификация, а также временем, необходимым для обучения по алгоритму.

Самым быстрым оказался LSSVM — при любом объеме обучающих данных и для всех трех районов. Например, для Фоулума при 50% данных, отданных под обучение, LSSVM понадобилось менее 0,5 секунд, а остальным алгоритмам понадобилось в 12–15 раз больше времени. Однако наиболее эффективным оказался SVM. Он показал самый высокий показатель обучения почти для всех объемов данных для Виннипега и Фоулума: 0,78 для Фоулума и 0,69 для Виннипега. На втором месте в обоих случаях оказался IVM — 0,76 и 0,68 соответственно.

«SVM оказался более эффективным, более точным и более стабильным при классификации двух из трех наборов данных. Еще один вывод, который мы сделали, — потрясающая скорость LSSVM по сравнению с другими методами. LSSVM выдает сопоставимую точность со скоростью в 12 раз быстрее, чем SVM, и примерно в 15 раз быстрее, чем RVM и IVM. Поэтому LSSVM можно рассматривать как достойную модификацию SVM с приемлемой точностью и большей скоростью», — Джавад Хатамиафкуиех, аспирант инженерной академии РУДН.

Исследование опбуликовано в European Journal of Remote Sensing.

Новости
Все новости
Наука
22 апреля
Стоматологи РУДН разработали программу, которая ускорит работу ортодонта на 40%

Сегодня диагностика и планирование лечения у ортодонтов занимает несколько дней. Также во время лечения могут возникнуть осложнения, которые замедляют процесс выздоровления пациента. Например, неправильное планирование ортодонтического лечения может привести к заболеваниям височно-нижнечелюстного сустава.

Наука
22 апреля
«Главная задача политической науки — защита национальной идентичности»: в РУДН политологи со всей страны обсудили наследие Великой Победы

В РУДН прошла Всероссийская научно-практическая конференция с международным участием «Политические науки и наследие Великой Победы: уроки истории и современные вызовы», посвященная 80-летию победы в Великой Отечественной войне.

Наука
18 апреля
Зрить в экспертизу: исследование при участии профессора РУДН – лучшее в конкурсе изданий по деятельности следственных органов России

Монография «Судебная экспертиза: типичные ошибки», подготовленная при участии Дмитрия Сундукова, профессора, заведующего кафедрой судебной медицины медицинского института РУДН, отмечена на V конкурсе на лучшее издание, посвященное деятельности следственных органов России. Исследование получило I место в категории «Лучшее исследование криминалистического обеспечения деятельности следственных органов».